Welcome to UE Central Library

Keep Smiling

Principles of semiconductor devices / Sima Dimitrijev

By: Material type: TextTextPublication details: Oxford University Press, New York : 2006Description: xviii, 588 pISBN:
  • 9780195161137 (hbk)
Subject(s): DDC classification:
  • 621.38152 D594
Contents:
ALL CHAPTERS END WITH A SUMMARY, PROBLEMS, AND REVIEW QUESTIONS; PART I: INTRODUCTION TO SEMICONDUCTORS; 1. Semiconductor Crystals: Atomic-Bond Model; 1.1. Crystal Lattices; 1.1.1. Unit Cell; 1.1.2. Planes and Directions; 1.1.3. Atomic Bonds; 1.2. Current Carriers; 1.2.1. Two Types of Current Carriers in Semiconductors; 1.2.2. N-Type and P-Type Doping; 1.2.3. Electroneutrality Equation; 1.2.4. Electron and Hole Generation and Recombination in Thermal Equilibrium; 2. Quantum Mechanics and Energy-Band Model; 2.1. Electrons as Waves; 2.1.1. De Broglie Relationship between Particle and Wave Properties; 2.1.2. Wave Function and Wave Packet; 2.1.3. Schrodinger Equation; 2.2. Energy Levels in Atoms and Energy Bands in Crystals; 2.2.1. Atomic Structure; 2.2.2. Energy Bands in Metals; 2.2.3. Energy Gap and Energy Bands in Semiconductors and Insulators; 2.3. Electrons and Holes as Particles; 2.4. Population of Electron States: Concentrations of Electrons and Holes; 2.4.1. Fermi-Dirac Distribution; 2.4.2. Maxwell-Boltzmann Approximation and Effective Density of States; 3. Drift; 3.1. Energy Bands with Applied Electric Field; 3.1.1. Energy-Band Presentation of Drift Current; 3.1.2. Resistance and Power Dissipation due to Carrier Scattering; 3.2. Ohm's Law, Sheet Resistance, and Conductivity; 3.2.1. Designing Integrated-Circuit Resistors; 3.2.2. Differential Form of Ohm's Law; 3.2.3. Conductivity Ingredients; 3.3. Carrier Mobility; 4. Diffusion; 4.1. Diffusion-Current Equation; 4.2. Diffusion Coefficient; 4.2.1. Einstein Relationship; 4.2.2. Haynes-Shockley Experiment; 4.2.3. Arrhenius Equation; 4.3. Basic Continuity Equation; 5. Generation and Recombination; 5.1. Generation and Recombination Mechanisms; 5.2. General Form of the Continuity Equation; 5.2.1. Recombination and Generation Rates; 5.2.2. Minority-Carrier Lifetime; 5.2.3. Diffusion Length; 5.3. Generation and Recombination Physics and Shockley-Read-Hall (SRH) Theory; 5.3.1. Capture and Emission Rates in Thermal Equilibrium; 5.3.2. Steady-State Equation for the Effective Thermal Generation/Recombination Rate; 5.3.3. Special Cases; 5.3.4. Surface Generation and Recombination; PART II: FUNDAMENTAL DEVICE STRUCTURES; 6. P-N Junction; 6.1.2. Reverse-Biased P-N Junction; 6.1.3. Forward-Biased P-N Junction; 6.1.4. Breakdown Phenomena; 6.1.4.1. Avalanche Breakdown; 6.1.4.2. Tunneling Breakdown; 6.2. DC Model; 6.2.1. Basic Current-Voltage (I-V) Equation; 6.2.2. Important Second-Order Effects; 6.2.3. Temperature Effects; 6.3. Capacitance of Reverse-Biased P-N Junction; 6.3.1. C-V Dependence; 6.3.2. Depletion-Layer Width: Solving the Poisson Equation; 6.3.3. SPICE Model for the Depletion-Layer Capacitance; 6.4. Stored-Charge Effects; 6.4.1. Stored Charge and Transit Time; 6.4.2. Relationship between the Transit Time and the Minority-Carrier Lifetime; 7. Metal-Semiconductor Contact and MOS Capacitor; 7.1. Metal-Semiconductor Contact; 7.1.1. Schottky Diode: Rectifying Metal-Semiconductor Contact; 7.1.2. Ohmic Metal-Semiconductor Contacts; 7.2. MOS Capacitor; 7.2.1. Properties of the Gate Oxide and the Oxide-Semiconductor Interface; 7.2.2. C-V Curve and the Surface-Potential Dependence on Gate Voltage; 8. MOSFET; 8.1. MOSFET Principles; 8.1.1. MOSFET Structure; 8.1.2. MOSFET as a Voltage-Controlled Switch; 8.2. Principal Current-Voltage Characteristics and Equations; 8.2.1. SPICE Level 1 Model; 8.2.2. SPICE Level 2 Model; 8.2.3. SPICE Level 3 Model: Principal Effects; 8.3. Second-Order Effects; 8.3.1. Mobility Reduction with Gate Voltage; 8.3.2. Velocity Saturation (Mobility Reduction with Drain Voltage); 8.3.4. Threshold-Voltage Related Short-Channel Effects; 8.3.5. Threshold Voltage Related Narrow-Channel Effects; 8.3.6. Subthreshold Current; 8.4. Nanoscale MOSFETs; 8.4.1. Down-Scaling Benefits and Rules; 8.4.2. Leakage Currents; 8.4.3. Advanced MOSFETs; 8.5. MOS-Based Memory Devices; 8.5.1. 1C1T DRAM Cell; 9. BJT; 9.1. BJT Principles; 9.1.1. BJT as a Voltage-Controlled Current Source; 9.1.2. BJT Currents and Gain Definitions; 9.1.4. The Four Modes of Operation: BJT as a Switch; 9.1.5. Complementary BJT; 9.1.6. BJT Versus MOSFET; 9.2. Principal Current-Voltage Characteristics: Ebers-Moll Model in Spice; 9.2.1. Injection Version; 9.2.2. Transport Version; 9.2.3. SPICE Version; 9.3. Second-Order Effects; 9.3.1. Early Effect: Finite Dynamic Output Resistance; 9.3.2. Parasitic Resistances; 9.3.3. Dependence of Common-Emitter Current Gain on Transistor Current: Low-Current Effects; 9.3.4. Dependence of Common-Emitter Current Gain on Transistor Current: Gummel-Poon Model for High-Current Effects; 9.4. Heterojunction Bipolar Transistor; PART III: DEVICE TECHNOLOGY AND ELECTRONICS; 10. Integrated-Circuit Technologies; 10.1. A Diode in IC Technology; 10.1.1. Basic Structure; 10.1.2. Lithography; 10.1.3. Process Sequence; 10.1.4. Diffusion Profiles; 10.2. MOSFET Technologies; 10.2.1. Local Oxidation of Silicon (LOCOS); 10.2.2. NMOS Technology; 10.2.3. Basic CMOS Technology; 10.2.4. Silicon-on-Insulator (SOI) Technology; 10.3. Bipolar IC Technologies; 10.3.1. IC Structure of NPN BJT; 10.3.2. Standard Bipolar Technology Process; 10.3.3. Implementation of PNP BJTs, Resistors, Capacitors, and Diodes; 10.3.4. Layer Merging; 10.3.5. BiCMOS Technology; 11. Device Electronics: Equivalent Circuits and Spice Parameters; 11.1. Diodes; 11.1.1. Static Model and Parameters in SPICE; 11.1.2. Large-Signal Equivalent Circuit in SPICE; 11.1.3. Parameter Measurement; 11.1.4. Small-Signal Equivalent Circuit; 11.2. MOSFET; 11.2.1. Static Model and Parameters: Level 3 in SPICE; 11.2.2. Parameter Measurement; 11.2.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE; 11.2.4. Simple Digital Model; 11.2.5. Small-Signal Equivalent Circuit; 11.3. BJT; 11.3.1. Static Model and Parameters: Ebers-Moll and Gummel-Poon Levels; IN SPICE; 11.3.2. Parameter Measurement; 11.3.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE; SMALL-SIGNAL EQUIVALENT CIRCUIT; 11.3.5. Parasitic IC Elements not Included in Device Models; 12. Photonic Devices; 12.1. Light Emitting Diodes (LED); 12.2. Photodetectors and Solar Cells; 12.2.1. Biasing for Photodetector and Solar-Cell Applications; 12.2.2. Carrier Generation in Photodetectors and Solar Cells; 12.3. Lasers; 12.3.1. Stimulated Emission, Inversion Population, and Other Fundamental Concepts; 12.3.2. A Typical Heterojunction Laser; 13. Microwave FETs and Diodes; 13.1. Gallium Arsenide versus Silicon; 13.1.1. Dielectric-Semiconductor Interface: Enhancement versus Depletion FETs; 13.1.2. Energy Gap; 13.1.3. Electron Mobility and Saturation Velocity; 13.1.4. Negative Dynamic Resistance; 13.2. JFET; 13.2.1. JFET Structure; 13.2.2. JFET Characteristics; 13.2.3. SPICE Model and Parameters; 13.3. MESFET; 13.3.1. MESFET Structure; 13.3.2. MESFET Characteristics; 13.3.3. SPICE Model and Parameters; 13.4. HEMT; 13.4.1. Two-Dimensional Electron Gas (2DEG); 13.4.2. HEMT Structure and Characteristics; 13.5. Negative Resistance Diodes; 13.5.1. Amplification and Oscillation by Negative Dynamic Resistance; 13.5.2. Gunn Diode; 13.5.3. IMPATT Diode; 13.5.4. Tunnel Diode; 14. Power Devices; 14.1. Power Diodes; 14.1.1. Drift Region in Power Devices; 14.1.2. Switching Characteristics; 14.1.3. Schottky Diode; 14.2. Power MOSFET; 14.3. IGBT; 14.4. Thyristor; BIBLIOGRAPHY; ANSWERS TO SELECTED PROBLEMS; INDEX
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books UE-Central Library 621.38152 D594 (Browse shelf(Opens below)) Available T177

Includes bibliography, answers to selected problems and index

ALL CHAPTERS END WITH A SUMMARY, PROBLEMS, AND REVIEW QUESTIONS; PART I: INTRODUCTION TO SEMICONDUCTORS; 1. Semiconductor Crystals: Atomic-Bond Model; 1.1. Crystal Lattices; 1.1.1. Unit Cell; 1.1.2. Planes and Directions; 1.1.3. Atomic Bonds; 1.2. Current Carriers; 1.2.1. Two Types of Current Carriers in Semiconductors; 1.2.2. N-Type and P-Type Doping; 1.2.3. Electroneutrality Equation; 1.2.4. Electron and Hole Generation and Recombination in Thermal Equilibrium; 2. Quantum Mechanics and Energy-Band Model; 2.1. Electrons as Waves; 2.1.1. De Broglie Relationship between Particle and Wave Properties; 2.1.2. Wave Function and Wave Packet; 2.1.3. Schrodinger Equation; 2.2. Energy Levels in Atoms and Energy Bands in Crystals; 2.2.1. Atomic Structure; 2.2.2. Energy Bands in Metals; 2.2.3. Energy Gap and Energy Bands in Semiconductors and Insulators; 2.3. Electrons and Holes as Particles; 2.4. Population of Electron States: Concentrations of Electrons and Holes; 2.4.1. Fermi-Dirac Distribution; 2.4.2. Maxwell-Boltzmann Approximation and Effective Density of States; 3. Drift; 3.1. Energy Bands with Applied Electric Field; 3.1.1. Energy-Band Presentation of Drift Current; 3.1.2. Resistance and Power Dissipation due to Carrier Scattering; 3.2. Ohm's Law, Sheet Resistance, and Conductivity; 3.2.1. Designing Integrated-Circuit Resistors; 3.2.2. Differential Form of Ohm's Law; 3.2.3. Conductivity Ingredients; 3.3. Carrier Mobility; 4. Diffusion; 4.1. Diffusion-Current Equation; 4.2. Diffusion Coefficient; 4.2.1. Einstein Relationship; 4.2.2. Haynes-Shockley Experiment; 4.2.3. Arrhenius Equation; 4.3. Basic Continuity Equation; 5. Generation and Recombination; 5.1. Generation and Recombination Mechanisms; 5.2. General Form of the Continuity Equation; 5.2.1. Recombination and Generation Rates; 5.2.2. Minority-Carrier Lifetime; 5.2.3. Diffusion Length; 5.3. Generation and Recombination Physics and Shockley-Read-Hall (SRH) Theory; 5.3.1. Capture and Emission Rates in Thermal Equilibrium; 5.3.2. Steady-State Equation for the Effective Thermal Generation/Recombination Rate; 5.3.3. Special Cases; 5.3.4. Surface Generation and Recombination; PART II: FUNDAMENTAL DEVICE STRUCTURES; 6. P-N Junction; 6.1.2. Reverse-Biased P-N Junction; 6.1.3. Forward-Biased P-N Junction; 6.1.4. Breakdown Phenomena; 6.1.4.1. Avalanche Breakdown; 6.1.4.2. Tunneling Breakdown; 6.2. DC Model; 6.2.1. Basic Current-Voltage (I-V) Equation; 6.2.2. Important Second-Order Effects; 6.2.3. Temperature Effects; 6.3. Capacitance of Reverse-Biased P-N Junction; 6.3.1. C-V Dependence; 6.3.2. Depletion-Layer Width: Solving the Poisson Equation; 6.3.3. SPICE Model for the Depletion-Layer Capacitance; 6.4. Stored-Charge Effects; 6.4.1. Stored Charge and Transit Time; 6.4.2. Relationship between the Transit Time and the Minority-Carrier Lifetime; 7. Metal-Semiconductor Contact and MOS Capacitor; 7.1. Metal-Semiconductor Contact; 7.1.1. Schottky Diode: Rectifying Metal-Semiconductor Contact; 7.1.2. Ohmic Metal-Semiconductor Contacts; 7.2. MOS Capacitor; 7.2.1. Properties of the Gate Oxide and the Oxide-Semiconductor Interface; 7.2.2. C-V Curve and the Surface-Potential Dependence on Gate Voltage; 8. MOSFET; 8.1. MOSFET Principles; 8.1.1. MOSFET Structure; 8.1.2. MOSFET as a Voltage-Controlled Switch; 8.2. Principal Current-Voltage Characteristics and Equations; 8.2.1. SPICE Level 1 Model; 8.2.2. SPICE Level 2 Model; 8.2.3. SPICE Level 3 Model: Principal Effects; 8.3. Second-Order Effects; 8.3.1. Mobility Reduction with Gate Voltage; 8.3.2. Velocity Saturation (Mobility Reduction with Drain Voltage); 8.3.4. Threshold-Voltage Related Short-Channel Effects; 8.3.5. Threshold Voltage Related Narrow-Channel Effects; 8.3.6. Subthreshold Current; 8.4. Nanoscale MOSFETs; 8.4.1. Down-Scaling Benefits and Rules; 8.4.2. Leakage Currents; 8.4.3. Advanced MOSFETs; 8.5. MOS-Based Memory Devices; 8.5.1. 1C1T DRAM Cell; 9. BJT; 9.1. BJT Principles; 9.1.1. BJT as a Voltage-Controlled Current Source; 9.1.2. BJT Currents and Gain Definitions; 9.1.4. The Four Modes of Operation: BJT as a Switch; 9.1.5. Complementary BJT; 9.1.6. BJT Versus MOSFET; 9.2. Principal Current-Voltage Characteristics: Ebers-Moll Model in Spice; 9.2.1. Injection Version; 9.2.2. Transport Version; 9.2.3. SPICE Version; 9.3. Second-Order Effects; 9.3.1. Early Effect: Finite Dynamic Output Resistance; 9.3.2. Parasitic Resistances; 9.3.3. Dependence of Common-Emitter Current Gain on Transistor Current: Low-Current Effects; 9.3.4. Dependence of Common-Emitter Current Gain on Transistor Current: Gummel-Poon Model for High-Current Effects; 9.4. Heterojunction Bipolar Transistor; PART III: DEVICE TECHNOLOGY AND ELECTRONICS; 10. Integrated-Circuit Technologies; 10.1. A Diode in IC Technology; 10.1.1. Basic Structure; 10.1.2. Lithography; 10.1.3. Process Sequence; 10.1.4. Diffusion Profiles; 10.2. MOSFET Technologies; 10.2.1. Local Oxidation of Silicon (LOCOS); 10.2.2. NMOS Technology; 10.2.3. Basic CMOS Technology; 10.2.4. Silicon-on-Insulator (SOI) Technology; 10.3. Bipolar IC Technologies; 10.3.1. IC Structure of NPN BJT; 10.3.2. Standard Bipolar Technology Process; 10.3.3. Implementation of PNP BJTs, Resistors, Capacitors, and Diodes; 10.3.4. Layer Merging; 10.3.5. BiCMOS Technology; 11. Device Electronics: Equivalent Circuits and Spice Parameters; 11.1. Diodes; 11.1.1. Static Model and Parameters in SPICE; 11.1.2. Large-Signal Equivalent Circuit in SPICE; 11.1.3. Parameter Measurement; 11.1.4. Small-Signal Equivalent Circuit; 11.2. MOSFET; 11.2.1. Static Model and Parameters: Level 3 in SPICE; 11.2.2. Parameter Measurement; 11.2.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE; 11.2.4. Simple Digital Model; 11.2.5. Small-Signal Equivalent Circuit; 11.3. BJT; 11.3.1. Static Model and Parameters: Ebers-Moll and Gummel-Poon Levels; IN SPICE; 11.3.2. Parameter Measurement; 11.3.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE; SMALL-SIGNAL EQUIVALENT CIRCUIT; 11.3.5. Parasitic IC Elements not Included in Device Models; 12. Photonic Devices; 12.1. Light Emitting Diodes (LED); 12.2. Photodetectors and Solar Cells; 12.2.1. Biasing for Photodetector and Solar-Cell Applications; 12.2.2. Carrier Generation in Photodetectors and Solar Cells; 12.3. Lasers; 12.3.1. Stimulated Emission, Inversion Population, and Other Fundamental Concepts; 12.3.2. A Typical Heterojunction Laser; 13. Microwave FETs and Diodes; 13.1. Gallium Arsenide versus Silicon; 13.1.1. Dielectric-Semiconductor Interface: Enhancement versus Depletion FETs; 13.1.2. Energy Gap; 13.1.3. Electron Mobility and Saturation Velocity; 13.1.4. Negative Dynamic Resistance; 13.2. JFET; 13.2.1. JFET Structure; 13.2.2. JFET Characteristics; 13.2.3. SPICE Model and Parameters; 13.3. MESFET; 13.3.1. MESFET Structure; 13.3.2. MESFET Characteristics; 13.3.3. SPICE Model and Parameters; 13.4. HEMT; 13.4.1. Two-Dimensional Electron Gas (2DEG); 13.4.2. HEMT Structure and Characteristics; 13.5. Negative Resistance Diodes; 13.5.1. Amplification and Oscillation by Negative Dynamic Resistance; 13.5.2. Gunn Diode; 13.5.3. IMPATT Diode; 13.5.4. Tunnel Diode; 14. Power Devices; 14.1. Power Diodes; 14.1.1. Drift Region in Power Devices; 14.1.2. Switching Characteristics; 14.1.3. Schottky Diode; 14.2. Power MOSFET; 14.3. IGBT; 14.4. Thyristor; BIBLIOGRAPHY; ANSWERS TO SELECTED PROBLEMS; INDEX

There are no comments on this title.

to post a comment.
Copyright © 2023, University of Education, Lahore. All Rights Reserved.
Email:centrallibrary@ue.edu.pk