Welcome to UE Central Library

Keep Smiling

Linear algebra thoroughly explained / (Record no. 643)

MARC details
000 -LEADER
fixed length control field 09918cam a22002297a 4500
001 - CONTROL NUMBER
control field 1996
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200707115041.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 070829s2008 gw a b 001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783540746379 (hbk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 3540746374 (hbk.)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783540746393 (ebook)
040 ## - CATALOGING SOURCE
Transcribing agency UKM
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 512.5
Edition number 22
Item number V989
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Vujičić, Milan.
245 10 - TITLE STATEMENT
Title Linear algebra thoroughly explained /
Statement of responsibility, etc Milan Vujičić.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Berlin :
Name of publisher, distributor, etc Springer,
Date of publication, distribution, etc c2008.
300 ## - PHYSICAL DESCRIPTION
Extent xii, 288 p.
Other physical details ill. ;
Dimensions 24 cm.
500 ## - GENERAL NOTE
General note Includes bibliographical references and index.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Algebras, Linear.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note 1 Vector Spaces <br/>2 1.1 Introduction <br/>3 1.2 Geometrical Vectors in a Plane <br/>4 1.3 Vectors in a Cartesian (Analytic) Plane R2 <br/>5 1.4 Scalar Multiplication (The Product of a Number with a Vector) <br/>6 1.5 The Dot Product of Two Vectors (or the Euclidean Inner Product<br/>7 of Two Vectors in R2) <br/>8 1.6 Applications of the Dot Product and Scalar Multiplication <br/>9 1.7 Vectors in Three-Dimensional Space (Spatial Vectors) ............ 15<br/>10 1.8 The Cross Product inR3 .................... ................. 18<br/>11 1.9 The Mixed Triple Product in RR3. Applications of the Cross<br/>12 and M ixed Products ........................... ............ 21<br/>13 1.10 Equations of Lines in Three-Dimensional Space ................. 24<br/>14 1.11 Equations of Planes in Three-Dimensional Space ................ 26<br/>15 1.12 Real Vector Spaces and Subspaces ......................... 28<br/>16 1.13 Linear Dependence and Independence. Spanning Subsets and Bases 30<br/>17 1.14 The Three Most Important Examples of Finite-Dimensional Real<br/>18 Vector Spaces .............................................. 33<br/>19 1.14.1 The Vector Space Rn" (Number Columns) ................ 33<br/>20 1.14.2 The Vector Space Rn,xn (Matrices) ...................... 35<br/>21 1.14.3 The Vector Space P3 (Polynomials) ..................... 37<br/>22 1.15 Some Special Topics about Matrices ......................... 39<br/>23 1.15.1 Matrix Multiplication .............. .............. 39<br/>24 1.15.2 Some Special Matrices ............................ 40<br/>25 A Determinants ............................................ 45<br/>A. I Definitions of Determinants ............... ............... 45<br/>26 A.2 Properties of Determinants ................. ............... 49<br/>27 2 Linear Mappings and Linear Systems ........................ 59<br/>28 2.1 A Short Plan for the First 5 Sections of Chapter 2 ................ 59<br/>29 2.2 Some General Statements about Mapping ...................... 60<br/>30 2.3 The Definition of Linear Mappings (Linmaps) .................. 62<br/>31 2.4 The Kernel and the Range of L ............................. 63<br/>31.1.1.1.1 L'<br/>32 2.5 The Quotient Space V,/ker L and the Isomorphism Vn/ker - ran L 65<br/>33 2.6 Representation Theory ................ ................... 67<br/>34 2.6.1 The Vector Space L(V,,Wm) .......................... 68<br/>35 2.6.2 The Linear Map M:R - R'm ........................ 69<br/>36 2.6.3 The Three Isomorphisms v, w and v - w ................. 70<br/>37 2.6.4 How to Calculate the Representing Matrix M ............. 72<br/>38 2.7 An Example (Representation of a Linmap Which Acts between<br/>39 Vector Spaces of Polynomials) ............................. 75<br/>40 2.8 Systems of Linear Equations (Linear Systems) .................. 79<br/>41 2.9 The Four Tasks ...................................... 85<br/>42 2.10 The Column Space and the Row Space ........................ 86<br/>43 2.11 Two Examples of Linear Dependence of Columns<br/>44 and Rows of a Matrix ...................................... 88<br/>45 2.12 Elementary Row Operations (Eros) and Elementary Matrices ...... 91<br/>46 2.12.1 Eros ........................................ 91<br/>47 2.12.2 Elementary Matrices ............................. 93<br/>48 2.13 The GJ Form of a Matrix ........................ ........... 95<br/>49 2.14 An Example (Preservation of Linear Independence<br/>50 and Dependence in GJ Form) ................................. 97<br/>51 2.15 The Existence of the Reduced Row-Echelon (GJ)<br/>52 Form for Every Matrix ................................. 99<br/>53 2.16 The Standard Method for Solving A = b ..................... 101<br/>54 2.16.1 When Does a Consistent System A-f = b Have<br/>54.1 a Unique Solution? ........... ...................... 102<br/>55 2.16.2 When a Consistent System A- = b Has No<br/>55.1 Unique Solution ..................................... 108<br/>56 2.17 The GJM Procedure - a New Approach to Solving Linear Systems<br/>57 with Nonunique Solutions ................ ................ 109<br/>58 2.17.1 Detailed Explanation ................................ 110<br/>59 2.18 Summary of Methods for Solving Systems of Linear Equations .... 116<br/>60 3 Inner-Product Vector Spaces (Euclidean and Unitary Spaces) ....... 119<br/>61 3.1 Euclidean Spaces E, ........................................ 119<br/>62 3.2 Unitary Spaces U, (or Complex Inner-product Vector Spaces) ..... 126<br/>63 3.3 Orthonormal Bases and the Gram-Schmidt Procedure<br/>64 for Orthonormalization of Bases .............................. 131<br/>65 3.4 Direct and Orthogonal Sums of Subspaces and the Orthogonal<br/>66 Complement of a Subspace ................... ............. 139<br/>67 3.4.1 Direct and Orthogonal Sums of Subspaces ............... 139<br/>68 3.4.2 The Orthogonal Complement of a Subspace .............. 141<br/>69 4 Dual Spaces and the Change of Basis ........................ 145<br/>70 4.1 The Dual Space U,* of a Unitary Space U, .................... 145<br/>71 4.2 The Adjoint Operator ................ ................... . 153<br/>72 4.3 The Change of Bases in V,(F) ................................ 157<br/>73 4.3.1 The Change of the Matrix-Column 4 That Represents<br/>73.1 a Vector x E V,(F) (Contravariant Vectors) ............... 158<br/>74 4.3.2 The Change of the n x n Matrix a.d That Represents<br/>74.1 an Operator A E L(V,,(F),V,n(F)) (Mixed Tensor<br/>74.2 of the Second Order) ................................. 159<br/>75 4.4 The Change of Bases in Euclidean (E,) and Unitary (U,) Vector<br/>76 Spaces........................ . .... ...... ... . ............ 162<br/>77 4.5 The Change of Biorthogonal Bases in V*(F)<br/>78 (Covariant Vectors) ......................................... 164<br/>79 4.6 The Relation between V,(F) and V(F) is Symmetric<br/>80 (The Invariant Isomorphism between V,n(F) and V* (F)) .......... 167<br/>81 4.7 Isodualism-The Invariant Isomorphism between the Superspaces<br/>82 L(V,(F),V,,(F)) andL(Vn,(F), V* (F)) ......................... 168<br/>83 5 The Eigen Problem or Diagonal Form of Representing Matrices ..... 173<br/>84 5.1 Eigenvalues, Eigenvectors, and Eigenspaces .................... 173<br/>85 5.2 Diagonalization of Square Matrices ......................... 180<br/>86 5.3 Diagonalization of an Operator in U, ......................... 183<br/>87 5.3.1 Two Examples of Normal Matrices .................. .. 188<br/>88 5.4 The Actual Method for Diagonalization of a Normal Operator ..... 191<br/>89 5.5 The Most Important Subsets of Normal Operators in U, .......... 194<br/>90 5.5.1 The Unitary Operators At = A- ..................... 194<br/>91 5.5.2 The Hermitian Operators At = A ....................... 198<br/>92 5.5.3 The Projection Operators Pt = p = P2 .................. 200<br/>93 5.5.4 Operations with Projection Operators ................... 203<br/>94 5.5.5 The Spectral Form of a Normal Operator A ............... 207<br/>95 5.6 Diagonalization of a Symmetric Operator in E3 ................. 208<br/>96 5.6.1 The Actual Procedure for Orthogonal Diagonalization<br/>96.1 of a Symmetric Operator in E3 ......................... 214<br/>97 5.6.2 Diagonalization of Quadratic Forms .................... 218<br/>98 5.6.3 Conic Sections in 1R2 .............................. 220<br/>99 5.7 Canonical Form of Orthogonal Matrices ....................... 228<br/>100 5.7.1 Orthogonal Matrices in 1R ......... ............... 228<br/>101 5.7.2 Orthogonal Matrices in R2 (Rotations and Reflections) ..... 229<br/>102 5.7.3 The Canonical Forms of Orthogonal Matrices in R3<br/>102.1 (Rotations and Rotations with Inversions) ................ 240<br/>103 6 Tensor Product of Unitary Spaces ........................... 243<br/>104 6.1 Kronecker Product of Matrices ........................... . 243<br/>105 6.2 Axioms for the Tensor Product of Unitary Spaces ................ 247<br/>106 6.2.1 The Tensor product of Unitary Spaces Cm and Cn ......... 247<br/>107 6.2.2 Definition of the Tensor Product of Unitary Spaces,<br/>107.1 in Analogy with the Previous Example ............ . 249<br/>108 6.3 Matrix Representation of the Tensor Product of Unitary Spaces .... 250<br/>109 6.4 Multiple Tensor Products of a Unitary Space U, and of its Dual<br/>110 Space U,* as the Principal Examples of the Notion of Unitary<br/>111 Tensors ..................................................252<br/>112 6.5 Unitary Space of Antilinear Operators La(U, Un) as the Main<br/>113 Realization of Urn Un ....................... .............. 254<br/>114 6.6 Comparative Treatment of Matrix Representations of Linear<br/>115 Operators from L(Um, U,,) and Antimatrix Representations<br/>116 of Antilinear Operators from La (U., Un,) = U,rn Un ............. 257<br/>117 7 The Dirac Notation in Quantum Mechanics: Dualism<br/>118 between Unitary Spaces (Sect. 4.1) and Isodualism<br/>119 between Their Superspaces (Sect. 4.7) .......................... 263<br/>120 7.1 Repeating the Statements about the Dualism D .................. 263<br/>121 7.2 Invariant Linear and Antilinear Bijections between<br/>122 the Superspaces L(U,,, U,) and L(U,, U,*)<br/>123 7.2.1 Dualism between the Superspaces<br/>124 7.2.2 Isodualism between Unitary Superspaces <br/>125 7.3 Superspaces L(U,, Un) c L(Ul, U*) as the Tensor Product of U,<br/>126 and Ut , i.e., U <br/>127 7.3.1 The Tensor Product of U, and UW <br/>128 7.3.2 Representation and the Tensor Nature of Diads <br/>129 7.3.3 The Proof of Tensor Product Properties <br/>130 7.3.4 Diad Representations of Operators <br/>131 Bibliography<br/><br/>
Holdings
Withdrawn status Damaged status Not for loan Home library Current library Date acquired Source of acquisition Full call number Barcode Date last seen Price effective from Koha item type
      UE-Central Library UE-Central Library 11.06.2018 U.E. 512.5 V989 T1996 11.06.2018 11.06.2018 Books
Copyright © 2023, University of Education, Lahore. All Rights Reserved.
Email:centrallibrary@ue.edu.pk