Welcome to UE Central Library

Keep Smiling

Molecular quantum mechanics / (Record no. 20181)

MARC details
000 -LEADER
fixed length control field 19626cam a2200217 a 4500
001 - CONTROL NUMBER
control field 16612763
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210716155913.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 110115s2011 enka b 001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780199541423 (pbk)
040 ## - CATALOGING SOURCE
Transcribing agency UE-CL
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.12
Item number At52
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Atkins, P. W.
245 10 - TITLE STATEMENT
Title Molecular quantum mechanics /
Statement of responsibility, etc Peter Atkins and Ronald Friedman.
250 ## - EDITION STATEMENT
Edition statement 5th ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Oxford ;
-- New York :
Name of publisher, distributor, etc Oxford University Press,
Date of publication, distribution, etc 2011
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 537 p. :
Other physical details ill. ;
Dimensions 25 cm.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Quantum chemistry.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Friedman, Ronald,
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Books
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: 0.1. Black-body radiation --<br/>0.2. Heat capacities --<br/>0.3. The photoelectric and Compton effects --<br/>0.4. Atomic spectra --<br/>0.5. The duality of matter --<br/>1. The foundations of quantum mechanics --<br/>Operators in quantum mechanics --<br/>1.1. Linear operators --<br/>1.2. Eigenfunctions and eigenvalues --<br/>1.3. Representations --<br/>1.4. Commutation and non-commutation --<br/>1.5. The construction of operators --<br/>1.6. Integrals over operators --<br/>1.7. Dirac bracket and matrix notation --<br/>a. Dirac brackets --<br/>b. Matrix notation --<br/>1.8. Hermitian operators --<br/>a. The definition of hermiticity --<br/>b. The consequences of hermiticity --<br/>The postulates of quantum mechanics --<br/>1.9. States and wavefunctions --<br/>1.10. The fundamental prescription --<br/>1.11. The outcome of measurements --<br/>1.12. The interpretation of the wavefunction --<br/>1.13. The equation for the wavefunction --<br/>1.14. The separation of the Schrodinger equation --<br/>The specification and evolution of states. 1.15. Simultaneous observables --<br/>1.16. The uncertainty principle --<br/>1.17. Consequences of the uncertainty principle --<br/>1.18. The uncertainty in energy and time --<br/>1.19. Time-evolution and conservation laws --<br/>Mathematical background I Complex numbers --<br/>MB1.1. Definitions --<br/>MB1.2. Polar representation --<br/>MB1.3. Operations --<br/>2. Linear motion and the harmonic oscillator --<br/>The characteristics of wavefunctions --<br/>2.1. Constraints on the Wavefunction --<br/>2.2. Some general remarks on the Schrodinger equation --<br/>a. The curvature of the wavefuntion --<br/>b. Qualitative solutions --<br/>c. The emergence of quantization --<br/>d. Penetration into non-classical regions --<br/>Translational motion --<br/>2.3. Energy and momentum --<br/>2.4. The significance of the coefficients --<br/>2.5. The flux density --<br/>2.6. Wavepackets --<br/>Penetration into and through barriers --<br/>2.7. An infinitely thick potential wall --<br/>2.8. A barrier of finite width --<br/>a. The case E <V --<br/>b. The case E> V --<br/>2.9. The Eckart potential barrier --<br/>Particle in a box --<br/>2.10. The solutions. 2.11. Features of the solutions --<br/>2.12. The two-dimensional square well --<br/>2.13. Degeneracy --<br/>The harmonic oscillator --<br/>2.14. The solutions --<br/>2.15. Properties of the solutions --<br/>2.16. The classical limit --<br/>Further information --<br/>2.1. The motion of wavepackets --<br/>2.2. The harmonic oscillator: solutin by factorization --<br/>2.3. The harmonic oscillator: the standard solution --<br/>2.4. The virial theorem --<br/>Mathematical background 2 Differential equations --<br/>MB2.1. The structure of differential equations --<br/>MB2.2. The solution of ordinary differential equations --<br/>MB2.3. The solution of partial differential equations --<br/>3. Rotational motion and the hydrogen atom --<br/>Particle on a ring --<br/>3.1. The hamiltonian and the Schrodinger equation --<br/>3.2. The angular momentum --<br/>3.3. The shapes of the wavefunctions --<br/>3.4. The classical limit --<br/>3.5. The circular square well --<br/>a. The separation of variables --<br/>b. The radial solutions --<br/>Particle on a sphere --<br/>3.6. The Schrodinger equation and its solution --<br/>a. The wavefunctions --<br/>b. The allowed energies. 3.7. The angular momentum of the particle --<br/>3.8. Properties of the solutions --<br/>3.9. The rigid rotor --<br/>3.10. Particle in a spherical well --<br/>Motion in a Coulombic field --<br/>3.11. The Schrodinger equation for hydrogenic atoms --<br/>3.12. The separation of the relative coordinates --<br/>3.13. The radial Schrodinger equation --<br/>a. The solutions close to the nucleus for l=0 --<br/>b. The solutions close to the nucleus for l & ne;0 --<br/>c. The complete solutions --<br/>d. The allowed energies --<br/>3.14. Probabilities and the radial distribution function --<br/>3.15. Atomic orbitals --<br/>a. s-orbitals --<br/>b. p-orbitals --<br/>c. d-and f-orbitals --<br/>d. The radial extent of orbitals --<br/>3.16. The degeneracy of hydrogenic atoms --<br/>Further information --<br/>3.1. The angular wavefunctions --<br/>3.2. Reduced mass --<br/>3.3. The radial wave equation --<br/>4. Angular momentum --<br/>The angular momentum operators --<br/>4.1. The operators and their commutation relations --<br/>a. The angular momentum operators --<br/>b. The commutation relations --<br/>4.2. Angular momentum observables --<br/>4.3. The shift operators --<br/>The definition of the states. 4.4. The effect of the shift operators --<br/>4.5. The eigenvalues of the angular momentum --<br/>4.6. The matrix elements of the angular momentum --<br/>4.7. The orbital angular momentum eigenfunctions --<br/>4.8. Spin --<br/>a. The properties of spin --<br/>b. The matrix elements of spin operators --<br/>The angular momenta of composite systems --<br/>4.9. The specification of coupled states --<br/>4.10. The permitted values of the total angular momentum --<br/>4.11. The vector model of coupled angular momenta --<br/>4.12. The relation between schemes --<br/>a. Singlet and triplet coupled states --<br/>b. The construction of coupled states --<br/>c. States of the configuration d2 --<br/>4.13. The coupling of several angular momenta --<br/>Mathematical background 3 Vectors --<br/>MB3.1. Definitions --<br/>MB3.2. Operations --<br/>MB3.3. The graphical representation of vector operations --<br/>MB3.4. Vector differentiation --<br/>5. Group theory --<br/>The symmetries of objects --<br/>5.1. Symmetry operations and elements --<br/>5.2. The classification of molecules --<br/>The calculus of symmetry --<br/>5.3. The definition of a group --<br/>5.4. Group multiplication tables. 5.5. Matrix representations --<br/>5.6. The properties of matrix representations --<br/>5.7. The characters of representations --<br/>5.8. Characters and classes --<br/>5.9. Irreducible representations --<br/>5.10. The great and little orthogonality theorems --<br/>Reduced representations --<br/>5.11. The reduction of representations --<br/>5.12. Symmetry-adapted bases --<br/>a. Projection operators --<br/>b. The generation of symmetry-adapted bases --<br/>The symmetry properties of functions --<br/>5.13. The transformation of p-orbitals --<br/>5.14. The decomposition of direct-product bases --<br/>5.15. Direct-product groups --<br/>5.16. Vanishing integrals --<br/>5.17. Symmetry and degeneracy --<br/>The full rotation group --<br/>5.18. The generators of rotations --<br/>5.19. The representation of the full rotation group --<br/>5.20. Coupled angular momenta --<br/>Applications --<br/>Mathematical background 4 Matrices --<br/>MB4.1. Definitions --<br/>MB4.2. Matrix addition and multiplication --<br/>MB4.3. Eigenvalue equations --<br/>6. Techniques of approximation --<br/>The semiclassical approximation --<br/>Time-independent perturbation theory. 6.1. Perturbation of a two-level system --<br/>6.2. Many-level systems --<br/>a. Formulation of the problem --<br/>b. The first-order correction to the energy --<br/>c. The first-order correction to the wavefunction --<br/>d. The second-order correction to the energy --<br/>6.3. Comments on the perturbation expressions --<br/>a. The role of symmetry --<br/>b. The closure approximation --<br/>6.4. Perturbation theory for degenerate states --<br/>Variation theory --<br/>6.5. The Rayleigh ratio --<br/>6.6. The Rayleigh-Ritz method --<br/>The Hellmann-Feynman theorem --<br/>Time-dependent perturbation theory --<br/>6.7. The time-dependent behaviour of a two-level system --<br/>a. The solutions --<br/>b. The Rabi formula --<br/>6.8. Many-level systems: the variation of constants --<br/>a. The general formulation --<br/>b. The effect of a slowly switched constant perturbation --<br/>c. The effect of an oscillating perturbation --<br/>6.9. Transition rates to continuum states --<br/>6.10. The Einstein transition probabilities --<br/>6.11. Lifetime and energy uncertainty --<br/>Further information --<br/>6.1. Electric dipole transitions --<br/>7. Atomic spectra and atomic structure --<br/>The spectrum of atomic hydrogen. 7.1. The energies of the transitions --<br/>7.2. Selection rules --<br/>a. The Laporte selection rule --<br/>b. Constraints on & delta;l --<br/>c. Constraints on & delta;m1 --<br/>d. Higher-order transitions --<br/>7.3. Orbital and spin magnetic moments --<br/>a. The orbital magnetic moment --<br/>b. The spin magnetic moment --<br/>7.4. Spin-orbit coupling --<br/>7.5. The fine-structure of spectra --<br/>7.6. Term symbols and spectral details --<br/>7.7. The detailed spectrum of hydrogen --<br/>The structure of helium --<br/>7.8. The helium atom --<br/>a. Atomic units --<br/>b. The orbital approximation --<br/>7.9. Excited states of helium --<br/>7.10. The spectrum of helium --<br/>7.11. The Pauli principle --<br/>Many-electron atoms --<br/>7.12. Penetration and shielding --<br/>7.13. Periodicity --<br/>7.14. Slater atomic orbitals --<br/>7.15. Slater determinants and the Condon-Slater rules --<br/>7.16. Self-consistent fields --<br/>a. The Hartree-Fock equations --<br/>b. One-electron energies --<br/>7.17. Restricted and unrestricted Hartree-Fock calculations --<br/>7.18. Density functional procedures --<br/>a. The Thomas-Fermi method --<br/>(b). The Thomas-Fermi-Dirac method --<br/>7.19. Term symbols and transitions of many-electron atoms. (A). Russell-Saunders coupling --<br/>(b). Excluded terms --<br/>(c). Selection rules --<br/>7.20. Hund's rules and Racah parameters --<br/>7.21. Alternative coupling schemes --<br/>Atoms in external fields --<br/>7.22. The normal Zeeman effect --<br/>7.23. The anomalous Zeeman effect --<br/>7.24. The Stark effect --<br/>Further information --<br/>7.1. The Hartree-Fock equations --<br/>7.2. Vector coupling schemes --<br/>7.3. Functionals and functional derivatives --<br/>7.4. Solution of the Thomas-Fermi equation --<br/>8. An introduction to molecular structure --<br/>The Born-Oppenheimer approximation --<br/>8.1. The formulation of the approximation --<br/>8.2. An application: the hydrogen molecule-ion. Note continued: (a). The molecular potential energy curves --<br/>(b). The molecular orbitals --<br/>Molecular orbital theory --<br/>8.3. Linear combinations of atomic orbitals --<br/>(a). The secular determinant --<br/>(b). The Coulomb integral --<br/>(c). The resonance integral --<br/>(d). The LCAO-MO energy levels for the hydrogen molecule-ion --<br/>(e). The LCAO-MOs for the hydrogen molecule-ion --<br/>8.4. The hydrogen molecule --<br/>8.5. Configuration interaction --<br/>8.6. Diatomic molecules --<br/>(a). Criteria for atomic orbital overlap and bond formation --<br/>(b). Homonuclear diatomic molecules --<br/>(c). Heteronuclear diatomic molecules --<br/>Molecular orbital theory of polyatomic molecules --<br/>8.7. Symmetry-adapted linear combinations --<br/>(a). The H2O molecule --<br/>(b). The NH3 molecule --<br/>8.8. Conjugated & pi;-systems and the Huckel approximation --<br/>8.9. Ligand field theory --<br/>(a). The SALCs of the octahedral complex --<br/>(b). The molecular orbitals of the octahedral complex --<br/>(c). The ground-state configuration: low-and high-spin complexes. (D). Tanabe-Sugano diagrams --<br/>(e). Jahn-Teller distortion --<br/>(f). Metal-ligand & pi; bonding --<br/>The band theory of solids --<br/>8.10. The tight-binding approximation --<br/>8.11. The Kronig-Penney model --<br/>8.12. Brillouin zones --<br/>Further information --<br/>8.1. Molecular integrals --<br/>9. Computational chemistry --<br/>The Hartree-Fock self-consistent field method --<br/>9.1. The formulation of the approach --<br/>9.2. The Hartree-Fock approach --<br/>9.3. The Roothaan equations --<br/>9.4. The selection of basis sets --<br/>(a). Gaussian-type orbitals --<br/>(b). The construction of contracted Gaussians --<br/>(c). Calculational accuracy and the basis set --<br/>Electron Correlation --<br/>9.5. Configuration state functions --<br/>9.6. Configuration interaction --<br/>9.7. Cl Calculations --<br/>9.8. Multiconfiguration methods --<br/>9.9. Møller-Plesset many-body perturbation theory --<br/>9.10. The coupled-cluster method --<br/>(a). Formulation of the method --<br/>(b). The coupled-cluster equations --<br/>Density functional theory --<br/>9.11. The Hohenberg-Kohn existence theorem --<br/>9.12. The Hohenberg-Kohn variational theorem. 9.13. The Kohn-Sham equations --<br/>9.14. The exchange-correlation challenge --<br/>(a). Local density approximations --<br/>(b). More elaborate functionals --<br/>Gradient methods and molecular properties --<br/>9.15. Energy derivatives and the Hessian matrix --<br/>9.16. Analytical procedures --<br/>Semiempirical methods --<br/>9.17. Conjugated & pi;-electron systems --<br/>(a). The Huckel approximation --<br/>(b). The Pariser-Parr-Pople method --<br/>9.18. General procedures --<br/>Molecular mechanics --<br/>9.19. Force fields --<br/>9.20. Quantum mechanics-molecular mechanics --<br/>10. Molecular rotations and vibrations --<br/>Spectroscopic transitions --<br/>10.1. Absorption and emission --<br/>10.2. Raman processes --<br/>Molecular rotation --<br/>10.3. Rotational energy levels --<br/>(a). Symmetric rotors --<br/>(b). Spherical rotors --<br/>(c). Linear rotors --<br/>(d). Centrifugal distortion --<br/>10.4. Pure rotational selection rules --<br/>(a). The gross selection rule --<br/>(b). The specific selection rules --<br/>(c). Wavenumbers of allowed transitions --<br/>10.5. Rotational Raman selection rules --<br/>10.6. Nuclear statistics. A. The case of CO2 --<br/>b. The case of H2 --<br/>c. A more general case --<br/>The vibrations of diatomic molecules --<br/>10.7. The vibrational energy levels of diatomic molecules --<br/>a. Harmonic oscillation --<br/>b. Anharmonic oscillation --<br/>10.8. Vibrational selection rules --<br/>a. The gross selection rule --<br/>b. The specific selection rule --<br/>c. The effect of anharmonicities on allowed transitions --<br/>10.9. Vibration-rotation spectra of diatomic molecules --<br/>10.10. Vibrational Raman transitions of diatomic molecules --<br/>The vibrations of polyatomic molecules --<br/>10.11. Normal modes --<br/>a. Potential energy --<br/>b. Normal coordinates --<br/>c. Vibrational wavefunctions and energies --<br/>10.12. Vibrational and Raman selection rules for polyatomic molecules --<br/>a. Infrared activity --<br/>b. Raman activity --<br/>c. Group theory and molecular vibrations --<br/>10.13. Further effects on vibrational and rotational spectra --<br/>a. The effects of anharmonicity --<br/>b. Coriolis forces --<br/>c. Inversion doubling --<br/>Further information --<br/>10.1. Centrifugal distortion --<br/>10.2. Normal modes: an example --<br/>Mathematical background 5 Fourier series and Fourier transforms. MB5.1. Fourier series --<br/>MB5.2. Fourier transforms --<br/>MB5.3. The convolution theorem --<br/>11. Molecular electronic transitions --<br/>The states of diatomic molecules --<br/>11.1. The Hund coupling cases --<br/>11.2. Decoupling and & Lambda;-doubling --<br/>11.3. Selection and correlation rules --<br/>Vibronic transitions --<br/>11.4. The Franck-Condon principle --<br/>11.5. The rotational structure of vibronic transitions --<br/>The electronic spectra of polyatomic molecules --<br/>11.6. Symmetry considerations --<br/>11.7. Chromophores --<br/>11.8. Vibronically allowed transitions --<br/>11.9. Singlet-triplet transitions --<br/>The fates of excited states --<br/>11.10. Non-radiative decay --<br/>11.11. Radiative decay --<br/>a. Fluorescence --<br/>b. Phosphorescence --<br/>Excited states and chemical reactions --<br/>11.12. The conservation of orbital symmetry --<br/>11.13. Electrocyclic reactions --<br/>11.14. Cycloaddition reactions --<br/>11.15. Photochemically induced electrocyclic reactions --<br/>11.16. Photochemically induced cycloaddition reactions --<br/>12. The electric properties of molecules --<br/>The response to electric fields --<br/>12.1. Molecular response parameters --<br/>12.2. The static electric polarizability. A. The mean polarizability and polarizability volume --<br/>b. The polarizability and molecular properties --<br/>c. Polarizabilities and molecular spectroscopy --<br/>d. Polarizabilities and dispersion interaction --<br/>e. Retardation effects --<br/>Bulk electrical properties --<br/>12.3. The relative permittivity and the electric susceptibility --<br/>a. Non-polar molecules --<br/>b. Polar molecules --<br/>12.4. Refractive index --<br/>a. The dynamic polarizability --<br/>b. The molar refractivity --<br/>c. The refractive index and dispersion --<br/>Optical activity --<br/>12.5. Circular birefringence and optical rotation --<br/>12.6. Magnetically induced polarization --<br/>12.7. Rotational strength --<br/>a. Symmetry properties --<br/>b. Optical rotatory dispersion --<br/>c. Estimation of rotational strengths --<br/>Further information --<br/>12.1. Oscillator strength --<br/>12.2. Sum rules --<br/>12.3. The Maxwell equations --<br/>a. The general form of the equations --<br/>b. The equations for fields in a vacuum --<br/>c. The propagation of fields in a polarizable medium --<br/>d. Propagation in chiral media --<br/>13. The magnetic properties of molecules --<br/>The description of magnetic fields. 13.1. Basic concepts --<br/>13.2. Paramagnetism --<br/>13.3. The vector potential --<br/>a. The formulation of the vector potential --<br/>b. Gauge invariance --<br/>Magnetic perturbations --<br/>13.4. The perturbation hamiltonian --<br/>13.5. The magnetic susceptibility --<br/>a. Expressions for the susceptibility --<br/>b. Contributions to the susceptibility --<br/>c. The role of the gauge --<br/>13.6. The current density --<br/>a. Real wavefunctions --<br/>b. Orbitally degenerate states, zero field --<br/>c. Orbitally non-degenerate states, non-zero field --<br/>13.7. The diamagnetic current density --<br/>13.8. The paramagnetic current density --<br/>Magnetic resonance parameters --<br/>13.9. Shielding constants --<br/>a. The nuclear field --<br/>b. The hamiltonian --<br/>c. The first-order correction to the energy --<br/>d. Contributions to the shielding constant --<br/>13.10. The diamagnetic contribution to shielding --<br/>13.11. The paramagnetic contribution to shielding --<br/>13.12. The g-value --<br/>a. The spin hamiltonian --<br/>b. Formulating the g-value --<br/>13.13. Spin-spin coupling --<br/>13.14. Hyperfine interactions --<br/>a. Dipolar coupling --<br/>b. The Fermi contact interaction. C. The total interaction --<br/>13.15. Nuclear spin-spin coupling --<br/>a. The formulation of the problem --<br/>b. Coupling through a chemical bond --<br/>Further information --<br/>13.1. The hamiltonian in the presence of a magnetic field --<br/>13.2. The dipolar vector potential --<br/>Mathematical background 6 Scalar and vector functions --<br/>MB6.1. Definitions --<br/>MB6.2. Differentiation --<br/>14. Scattering theory --<br/>The fundamental concepts --<br/>14.1. The scattering matrix --<br/>14.2. The scattering cross-section --<br/>Elastic scattering --<br/>14.3. Stationary scattering states --<br/>a. The scattering amplitude --<br/>b. The differential cross-section --<br/>14.4. Scattering by a central potential --<br/>a. The partial-wave stationary scattering state --<br/>b. The partial-wave equation --<br/>c. The scattering phase shift --<br/>d. The scattering matrix element --<br/>e. The scattering cross-section --<br/>14.5. Scattering by a spherical square well --<br/>a. The S-wave radial wavefunction and phase shift --<br/>b. Background and resonance phase shifts --<br/>c. The Breit-Wigner formula --<br/>d. The resonance contribution to the scattering matrix element. 14.6. Methods of approximation --<br/>a. The WKB approximation --<br/>b. The Born approximation --<br/>Multichannel scattering --<br/>14.7. The scattering matrix for multichannel processes --<br/>14.8. Inelastic scattering --<br/>a. The form of the multichannel stationary scattering state --<br/>b. Scattering amplitude and cross-sections --<br/>c. The close-coupling approximation --<br/>14.9. Reactive scattering --<br/>14.10. The Smatrix and multichannel resonances --<br/>Further information --<br/>14.11. Green's functions --<br/>Resource section --<br/>Further reading. Note continued: 1. Character tables and direct products --<br/>2. Vector coupling coefficients --<br/>3. Wigner-Witmer rules.
Holdings
Withdrawn status Damaged status Not for loan Home library Current library Date acquired Full call number Barcode Date last seen Price effective from Koha item type
      UE-Central Library UE-Central Library 16.07.2021 530.12 At52 T13667 16.07.2021 16.07.2021 Books
      UE-Central Library UE-Central Library 16.07.2021 530.12 At52 T13668 16.07.2021 16.07.2021 Books
Copyright © 2023, University of Education, Lahore. All Rights Reserved.
Email:centrallibrary@ue.edu.pk