000 | 01418cam a2200217 a 4500 | ||
---|---|---|---|
999 |
_c19541 _d19541 |
||
001 | 4914830 | ||
005 | 20191224092542.0 | ||
008 | 940610s1993 enk b 000 0 eng d | ||
020 | _a0521458978 | ||
020 | _a9780521458979 (pbk) | ||
040 | _cTxHR | ||
082 | 0 | 0 |
_a511.5 _220 _bB484 |
100 | 1 | _aBiggs, Norman. | |
245 | 1 | 0 |
_aAlgebraic graph theory / _cNorman Biggs. |
250 | _a2nd ed. | ||
260 |
_aCambridge : _bCambridge University Press _c1993 |
||
300 |
_avi, 205 p. ; _c23 cm. |
||
650 | 0 | _aGraph theory. | |
942 | _cBK | ||
505 | 0 | _a1. Introduction to algebraic graph theory; Part I. Linear Algebra in Graphic Thoery: 2. The spectrum of a graph; 3. Regular graphs and line graphs; 4. Cycles and cuts; 5. Spanning trees and associated structures; 6. The tree-number; 7. Determinant expansions; 8. Vertex-partitions and the spectrum; Part II. Colouring Problems: 9. The chromatic polynomial; 10. Subgraph expansions; 11. The multiplicative expansion; 12. The induced subgraph expansion; 13. The Tutte polynomial; 14. Chromatic polynomials and spanning trees; Part III. Symmetry and Regularity: 15. Automorphisms of graphs; 16. Vertex-transitive graphs; 17. Symmetric graphs; 18. Symmetric graphs of degree three; 19. The covering graph construction; 20. Distance-transitive graphs; 21. Feasibility of intersection arrays; 22. Imprimitivity; 23. Minimal regular graphs with given girth; References; Index. |