000 01398cam a2200205 4500
999 _c1792
_d1792
001 2999
005 20200715150559.0
008 730620s1974 njua b 001 0 eng
020 _a0131115189
040 _cDLC
082 0 0 _a515/.028/54
_bL5311
100 1 _aLeinbach, L. Carl.
245 1 0 _aCalculus with the computer :
_ba laboratory manual
_c/ L. Carl Leinbach.
260 _aEnglewood Cliffs, N.J :
_bPrentice-Hall,
_c1974
300 _axii, 205 p.
_billus.
_c24 cm.
500 _aincludes bibliography and index
650 0 _aCalculus
_xData processing.
942 _cBK
505 0 _a1. Analyzing the problem 2. Limits: an intuitive discussion 3. Limits: a formal definition 4. Models for population growth 5. Approximation of roots 6. Locating extrema 7. A simulation problem 8. Summation notation 9. Approximating the area under a curve 10. Estimation of definite integrals 11. Another definition of the definite integral 12. Simpson's rule 13. An application of the fundamental theorem 14. Another approximation 15. The exponential function 16. Simulation of waiting lines 17. Infinite series 18. Taylor's series 19. Symbolic differentiation 20. A different type of optimization problem 21. The basic language: a brief introduction 22. The fortran language: a brief introduction 23. A random number generator 24. The printer plotter 25. A differentiation program