000 01384cam a22002291 4500
999 _c1498
_d1498
001 2644
005 20200820100446.0
008 791005m19571971nyua b 000 0 eng
020 _a0471257095 (v. 2)
040 _cDLC
082 0 0 _a519.2
_bF318
100 1 _aFeller, William,
245 1 3 _aAn introduction to probability theory and its applications
_c/ William Feller
250 _a2nd ed.
260 _aNew York :
_bWiley,
_c[1957-71]
300 _a2 v.
_billus.
_c24 cm.
490 0 _aA Wiley publication in mathematical statistics
500 _aincludes index
650 0 _aProbabilities.
942 _cBK
505 0 _a1. Introduction: the nature of probability theory 2. The sample space 3. Elements of combinatorial analysis 4. Fluctuations in coin tossing and random wales 5. Combination of events 6. Conditional probability. Stochastic independence 7. The binomial and the poisson distributions 8. The normal approximation to the binomial distribution 9. Unlimited sequences of bernoulli trials 10. Random variables; expectation 11. Laws of large numbers 12. Integral valued variables. Generating functions 13. Compound distributions. Branching processes 14. Recurrent events. The renewal equation 15. Random walk and ruin problems 16. Markov chains 17. Algebraic treatment of finite markov chains 18. The simplest time-dependent stochastic processes