000 | 01384cam a22002291 4500 | ||
---|---|---|---|
999 |
_c1498 _d1498 |
||
001 | 2644 | ||
005 | 20200820100446.0 | ||
008 | 791005m19571971nyua b 000 0 eng | ||
020 | _a0471257095 (v. 2) | ||
040 | _cDLC | ||
082 | 0 | 0 |
_a519.2 _bF318 |
100 | 1 | _aFeller, William, | |
245 | 1 | 3 |
_aAn introduction to probability theory and its applications _c/ William Feller |
250 | _a2nd ed. | ||
260 |
_aNew York : _bWiley, _c[1957-71] |
||
300 |
_a2 v. _billus. _c24 cm. |
||
490 | 0 | _aA Wiley publication in mathematical statistics | |
500 | _aincludes index | ||
650 | 0 | _aProbabilities. | |
942 | _cBK | ||
505 | 0 | _a1. Introduction: the nature of probability theory 2. The sample space 3. Elements of combinatorial analysis 4. Fluctuations in coin tossing and random wales 5. Combination of events 6. Conditional probability. Stochastic independence 7. The binomial and the poisson distributions 8. The normal approximation to the binomial distribution 9. Unlimited sequences of bernoulli trials 10. Random variables; expectation 11. Laws of large numbers 12. Integral valued variables. Generating functions 13. Compound distributions. Branching processes 14. Recurrent events. The renewal equation 15. Random walk and ruin problems 16. Markov chains 17. Algebraic treatment of finite markov chains 18. The simplest time-dependent stochastic processes |