000 01660cam a2200217 a 4500
999 _c139
_d139
001 902
005 20210113113334.0
008 000413s2001 njua b 001 0 eng
020 _a9788178088303
040 _cDLC
082 0 0 _a511/.5
_221
_bW5161
100 1 _aWest, Douglas Brent.
245 1 0 _aIntroduction to graph theory /
_cDouglas B. West.
250 _a2nd ed.
260 _aNew Dehli :
_bPearson ,
_c2001
300 _axix, 588 p.
_bill. ;
_c25 cm.
500 _aIncludes bibliographical references (p. 537-568) and indexes.
650 0 _aGraph theory.
942 _cBK
505 0 _a1. Ch. 1. Fundamental concepts: What is a graph? ; 2. Paths, cycles, and trails ; 3. Vertex degrees and counting ; 4. Directed graphs ; 5. Ch. 2. Trees and distance: Basic properties ; 6. Spanning trees and enumeration ; 7. Optimization and trees ; 8. Ch. 3. Matchings and factors: Matchings and covers ; 9. Algorithms and applications ; 10. Matchings in general graphs ; 11. Ch. 4. Connectivity and paths: Cuts and connectivity ; 12. K-connected graphs ; 13. Network flow problems ; 14. Ch. 5. Coloring of graphs: Vertex colorings and upper bounds ; 15. Structure of k-chromatic graphs ; 16. Enumerative aspects ; 17. Ch. 6. Planar graphs: Embeddings and Euler's formula ; 18. Characterization of Planar graphs ; 19. Parameters of planarity ; 20. Ch. 7. Edges and cycles: Line graphs and edge-coloring ; 21. Hamiltonion cycles ; 22. Planarity, coloring, and cycles ; 23. Ch. 8. Additional topics (optional): Perfect graphs ; 24. Matroids ; 25. Ramsey theory ; 26. More extremeal problems ; 27. Random graphs ; 28. Eigenvalues of graphs.