000 | 01660cam a2200217 a 4500 | ||
---|---|---|---|
999 |
_c139 _d139 |
||
001 | 902 | ||
005 | 20210113113334.0 | ||
008 | 000413s2001 njua b 001 0 eng | ||
020 | _a9788178088303 | ||
040 | _cDLC | ||
082 | 0 | 0 |
_a511/.5 _221 _bW5161 |
100 | 1 | _aWest, Douglas Brent. | |
245 | 1 | 0 |
_aIntroduction to graph theory / _cDouglas B. West. |
250 | _a2nd ed. | ||
260 |
_aNew Dehli : _bPearson , _c2001 |
||
300 |
_axix, 588 p. _bill. ; _c25 cm. |
||
500 | _aIncludes bibliographical references (p. 537-568) and indexes. | ||
650 | 0 | _aGraph theory. | |
942 | _cBK | ||
505 | 0 | _a1. Ch. 1. Fundamental concepts: What is a graph? ; 2. Paths, cycles, and trails ; 3. Vertex degrees and counting ; 4. Directed graphs ; 5. Ch. 2. Trees and distance: Basic properties ; 6. Spanning trees and enumeration ; 7. Optimization and trees ; 8. Ch. 3. Matchings and factors: Matchings and covers ; 9. Algorithms and applications ; 10. Matchings in general graphs ; 11. Ch. 4. Connectivity and paths: Cuts and connectivity ; 12. K-connected graphs ; 13. Network flow problems ; 14. Ch. 5. Coloring of graphs: Vertex colorings and upper bounds ; 15. Structure of k-chromatic graphs ; 16. Enumerative aspects ; 17. Ch. 6. Planar graphs: Embeddings and Euler's formula ; 18. Characterization of Planar graphs ; 19. Parameters of planarity ; 20. Ch. 7. Edges and cycles: Line graphs and edge-coloring ; 21. Hamiltonion cycles ; 22. Planarity, coloring, and cycles ; 23. Ch. 8. Additional topics (optional): Perfect graphs ; 24. Matroids ; 25. Ramsey theory ; 26. More extremeal problems ; 27. Random graphs ; 28. Eigenvalues of graphs. |