000 | 01338cam a2200265 a 4500 | ||
---|---|---|---|
999 |
_c1003 _d1003 |
||
001 | 1361 | ||
005 | 20200908112402.0 | ||
008 | 060831s2008 maua 001 0 eng | ||
020 | _a9788131718674 | ||
040 | _cPK | ||
082 | 0 | 0 |
_a515 _222 _bW4251 |
100 | 1 | _aWeir, Maurice D. | |
245 | 1 | 0 |
_aThomas' calculus _c/ based on the original work by George B. Thomas, Jr., as revised by Maurice D. Weir, Joel Haas, Frank R. Giordano. |
250 | _a11th ed., media upgrade. | ||
260 |
_aNew Delhi : _bPearson, _c2008 |
||
300 |
_a1 v. _bill. (some col.) ; _c26 cm. |
||
500 | _aUpdated 10th ed. revised by Ross L. Finney, Maurice D. Weir, and Frank R. Giordano | ||
500 | _aIncludes index. | ||
650 | 0 | _aCalculus | |
700 | 1 | _aHass, Joel. | |
700 | 1 | _aThomas, George B., | |
700 | 1 | _aFinney, Ross L. | |
942 | _cBK | ||
505 | 0 | _a1. Preliminaries 2. Limits and continuity 3. Differentiation 4. Applications of derivatives 5. Integration 6. Applications of definite integrals 7. Transcendental functions 8. Techniques of integration 9. Further applications of integration 10. Conic sections and polar coordinates 11. Infinite sequences and series 12. Vectors and the geometry of space 13. Vector valued functions and motion in space 14. Partial derivatives 15. Multiple integrals 16. Integration in vector fields |