Molecular quantum mechanics / Peter Atkins and Ronald Friedman.
Material type: TextPublication details: Oxford ; New York : Oxford University Press, 2011Edition: 5th edDescription: xiv, 537 p. : ill. ; 25 cmISBN:- 9780199541423 (pbk)
- 530.12 At52
Item type | Current library | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|
Books | UE-Central Library | 530.12 At52 (Browse shelf(Opens below)) | Available | T13667 | ||
Books | UE-Central Library | 530.12 At52 (Browse shelf(Opens below)) | Available | T13668 |
Machine generated contents note: 0.1. Black-body radiation --
0.2. Heat capacities --
0.3. The photoelectric and Compton effects --
0.4. Atomic spectra --
0.5. The duality of matter --
1. The foundations of quantum mechanics --
Operators in quantum mechanics --
1.1. Linear operators --
1.2. Eigenfunctions and eigenvalues --
1.3. Representations --
1.4. Commutation and non-commutation --
1.5. The construction of operators --
1.6. Integrals over operators --
1.7. Dirac bracket and matrix notation --
a. Dirac brackets --
b. Matrix notation --
1.8. Hermitian operators --
a. The definition of hermiticity --
b. The consequences of hermiticity --
The postulates of quantum mechanics --
1.9. States and wavefunctions --
1.10. The fundamental prescription --
1.11. The outcome of measurements --
1.12. The interpretation of the wavefunction --
1.13. The equation for the wavefunction --
1.14. The separation of the Schrodinger equation --
The specification and evolution of states. 1.15. Simultaneous observables --
1.16. The uncertainty principle --
1.17. Consequences of the uncertainty principle --
1.18. The uncertainty in energy and time --
1.19. Time-evolution and conservation laws --
Mathematical background I Complex numbers --
MB1.1. Definitions --
MB1.2. Polar representation --
MB1.3. Operations --
2. Linear motion and the harmonic oscillator --
The characteristics of wavefunctions --
2.1. Constraints on the Wavefunction --
2.2. Some general remarks on the Schrodinger equation --
a. The curvature of the wavefuntion --
b. Qualitative solutions --
c. The emergence of quantization --
d. Penetration into non-classical regions --
Translational motion --
2.3. Energy and momentum --
2.4. The significance of the coefficients --
2.5. The flux density --
2.6. Wavepackets --
Penetration into and through barriers --
2.7. An infinitely thick potential wall --
2.8. A barrier of finite width --
a. The case E <V --
b. The case E> V --
2.9. The Eckart potential barrier --
Particle in a box --
2.10. The solutions. 2.11. Features of the solutions --
2.12. The two-dimensional square well --
2.13. Degeneracy --
The harmonic oscillator --
2.14. The solutions --
2.15. Properties of the solutions --
2.16. The classical limit --
Further information --
2.1. The motion of wavepackets --
2.2. The harmonic oscillator: solutin by factorization --
2.3. The harmonic oscillator: the standard solution --
2.4. The virial theorem --
Mathematical background 2 Differential equations --
MB2.1. The structure of differential equations --
MB2.2. The solution of ordinary differential equations --
MB2.3. The solution of partial differential equations --
3. Rotational motion and the hydrogen atom --
Particle on a ring --
3.1. The hamiltonian and the Schrodinger equation --
3.2. The angular momentum --
3.3. The shapes of the wavefunctions --
3.4. The classical limit --
3.5. The circular square well --
a. The separation of variables --
b. The radial solutions --
Particle on a sphere --
3.6. The Schrodinger equation and its solution --
a. The wavefunctions --
b. The allowed energies. 3.7. The angular momentum of the particle --
3.8. Properties of the solutions --
3.9. The rigid rotor --
3.10. Particle in a spherical well --
Motion in a Coulombic field --
3.11. The Schrodinger equation for hydrogenic atoms --
3.12. The separation of the relative coordinates --
3.13. The radial Schrodinger equation --
a. The solutions close to the nucleus for l=0 --
b. The solutions close to the nucleus for l & ne;0 --
c. The complete solutions --
d. The allowed energies --
3.14. Probabilities and the radial distribution function --
3.15. Atomic orbitals --
a. s-orbitals --
b. p-orbitals --
c. d-and f-orbitals --
d. The radial extent of orbitals --
3.16. The degeneracy of hydrogenic atoms --
Further information --
3.1. The angular wavefunctions --
3.2. Reduced mass --
3.3. The radial wave equation --
4. Angular momentum --
The angular momentum operators --
4.1. The operators and their commutation relations --
a. The angular momentum operators --
b. The commutation relations --
4.2. Angular momentum observables --
4.3. The shift operators --
The definition of the states. 4.4. The effect of the shift operators --
4.5. The eigenvalues of the angular momentum --
4.6. The matrix elements of the angular momentum --
4.7. The orbital angular momentum eigenfunctions --
4.8. Spin --
a. The properties of spin --
b. The matrix elements of spin operators --
The angular momenta of composite systems --
4.9. The specification of coupled states --
4.10. The permitted values of the total angular momentum --
4.11. The vector model of coupled angular momenta --
4.12. The relation between schemes --
a. Singlet and triplet coupled states --
b. The construction of coupled states --
c. States of the configuration d2 --
4.13. The coupling of several angular momenta --
Mathematical background 3 Vectors --
MB3.1. Definitions --
MB3.2. Operations --
MB3.3. The graphical representation of vector operations --
MB3.4. Vector differentiation --
5. Group theory --
The symmetries of objects --
5.1. Symmetry operations and elements --
5.2. The classification of molecules --
The calculus of symmetry --
5.3. The definition of a group --
5.4. Group multiplication tables. 5.5. Matrix representations --
5.6. The properties of matrix representations --
5.7. The characters of representations --
5.8. Characters and classes --
5.9. Irreducible representations --
5.10. The great and little orthogonality theorems --
Reduced representations --
5.11. The reduction of representations --
5.12. Symmetry-adapted bases --
a. Projection operators --
b. The generation of symmetry-adapted bases --
The symmetry properties of functions --
5.13. The transformation of p-orbitals --
5.14. The decomposition of direct-product bases --
5.15. Direct-product groups --
5.16. Vanishing integrals --
5.17. Symmetry and degeneracy --
The full rotation group --
5.18. The generators of rotations --
5.19. The representation of the full rotation group --
5.20. Coupled angular momenta --
Applications --
Mathematical background 4 Matrices --
MB4.1. Definitions --
MB4.2. Matrix addition and multiplication --
MB4.3. Eigenvalue equations --
6. Techniques of approximation --
The semiclassical approximation --
Time-independent perturbation theory. 6.1. Perturbation of a two-level system --
6.2. Many-level systems --
a. Formulation of the problem --
b. The first-order correction to the energy --
c. The first-order correction to the wavefunction --
d. The second-order correction to the energy --
6.3. Comments on the perturbation expressions --
a. The role of symmetry --
b. The closure approximation --
6.4. Perturbation theory for degenerate states --
Variation theory --
6.5. The Rayleigh ratio --
6.6. The Rayleigh-Ritz method --
The Hellmann-Feynman theorem --
Time-dependent perturbation theory --
6.7. The time-dependent behaviour of a two-level system --
a. The solutions --
b. The Rabi formula --
6.8. Many-level systems: the variation of constants --
a. The general formulation --
b. The effect of a slowly switched constant perturbation --
c. The effect of an oscillating perturbation --
6.9. Transition rates to continuum states --
6.10. The Einstein transition probabilities --
6.11. Lifetime and energy uncertainty --
Further information --
6.1. Electric dipole transitions --
7. Atomic spectra and atomic structure --
The spectrum of atomic hydrogen. 7.1. The energies of the transitions --
7.2. Selection rules --
a. The Laporte selection rule --
b. Constraints on & delta;l --
c. Constraints on & delta;m1 --
d. Higher-order transitions --
7.3. Orbital and spin magnetic moments --
a. The orbital magnetic moment --
b. The spin magnetic moment --
7.4. Spin-orbit coupling --
7.5. The fine-structure of spectra --
7.6. Term symbols and spectral details --
7.7. The detailed spectrum of hydrogen --
The structure of helium --
7.8. The helium atom --
a. Atomic units --
b. The orbital approximation --
7.9. Excited states of helium --
7.10. The spectrum of helium --
7.11. The Pauli principle --
Many-electron atoms --
7.12. Penetration and shielding --
7.13. Periodicity --
7.14. Slater atomic orbitals --
7.15. Slater determinants and the Condon-Slater rules --
7.16. Self-consistent fields --
a. The Hartree-Fock equations --
b. One-electron energies --
7.17. Restricted and unrestricted Hartree-Fock calculations --
7.18. Density functional procedures --
a. The Thomas-Fermi method --
(b). The Thomas-Fermi-Dirac method --
7.19. Term symbols and transitions of many-electron atoms. (A). Russell-Saunders coupling --
(b). Excluded terms --
(c). Selection rules --
7.20. Hund's rules and Racah parameters --
7.21. Alternative coupling schemes --
Atoms in external fields --
7.22. The normal Zeeman effect --
7.23. The anomalous Zeeman effect --
7.24. The Stark effect --
Further information --
7.1. The Hartree-Fock equations --
7.2. Vector coupling schemes --
7.3. Functionals and functional derivatives --
7.4. Solution of the Thomas-Fermi equation --
8. An introduction to molecular structure --
The Born-Oppenheimer approximation --
8.1. The formulation of the approximation --
8.2. An application: the hydrogen molecule-ion. Note continued: (a). The molecular potential energy curves --
(b). The molecular orbitals --
Molecular orbital theory --
8.3. Linear combinations of atomic orbitals --
(a). The secular determinant --
(b). The Coulomb integral --
(c). The resonance integral --
(d). The LCAO-MO energy levels for the hydrogen molecule-ion --
(e). The LCAO-MOs for the hydrogen molecule-ion --
8.4. The hydrogen molecule --
8.5. Configuration interaction --
8.6. Diatomic molecules --
(a). Criteria for atomic orbital overlap and bond formation --
(b). Homonuclear diatomic molecules --
(c). Heteronuclear diatomic molecules --
Molecular orbital theory of polyatomic molecules --
8.7. Symmetry-adapted linear combinations --
(a). The H2O molecule --
(b). The NH3 molecule --
8.8. Conjugated & pi;-systems and the Huckel approximation --
8.9. Ligand field theory --
(a). The SALCs of the octahedral complex --
(b). The molecular orbitals of the octahedral complex --
(c). The ground-state configuration: low-and high-spin complexes. (D). Tanabe-Sugano diagrams --
(e). Jahn-Teller distortion --
(f). Metal-ligand & pi; bonding --
The band theory of solids --
8.10. The tight-binding approximation --
8.11. The Kronig-Penney model --
8.12. Brillouin zones --
Further information --
8.1. Molecular integrals --
9. Computational chemistry --
The Hartree-Fock self-consistent field method --
9.1. The formulation of the approach --
9.2. The Hartree-Fock approach --
9.3. The Roothaan equations --
9.4. The selection of basis sets --
(a). Gaussian-type orbitals --
(b). The construction of contracted Gaussians --
(c). Calculational accuracy and the basis set --
Electron Correlation --
9.5. Configuration state functions --
9.6. Configuration interaction --
9.7. Cl Calculations --
9.8. Multiconfiguration methods --
9.9. Møller-Plesset many-body perturbation theory --
9.10. The coupled-cluster method --
(a). Formulation of the method --
(b). The coupled-cluster equations --
Density functional theory --
9.11. The Hohenberg-Kohn existence theorem --
9.12. The Hohenberg-Kohn variational theorem. 9.13. The Kohn-Sham equations --
9.14. The exchange-correlation challenge --
(a). Local density approximations --
(b). More elaborate functionals --
Gradient methods and molecular properties --
9.15. Energy derivatives and the Hessian matrix --
9.16. Analytical procedures --
Semiempirical methods --
9.17. Conjugated & pi;-electron systems --
(a). The Huckel approximation --
(b). The Pariser-Parr-Pople method --
9.18. General procedures --
Molecular mechanics --
9.19. Force fields --
9.20. Quantum mechanics-molecular mechanics --
10. Molecular rotations and vibrations --
Spectroscopic transitions --
10.1. Absorption and emission --
10.2. Raman processes --
Molecular rotation --
10.3. Rotational energy levels --
(a). Symmetric rotors --
(b). Spherical rotors --
(c). Linear rotors --
(d). Centrifugal distortion --
10.4. Pure rotational selection rules --
(a). The gross selection rule --
(b). The specific selection rules --
(c). Wavenumbers of allowed transitions --
10.5. Rotational Raman selection rules --
10.6. Nuclear statistics. A. The case of CO2 --
b. The case of H2 --
c. A more general case --
The vibrations of diatomic molecules --
10.7. The vibrational energy levels of diatomic molecules --
a. Harmonic oscillation --
b. Anharmonic oscillation --
10.8. Vibrational selection rules --
a. The gross selection rule --
b. The specific selection rule --
c. The effect of anharmonicities on allowed transitions --
10.9. Vibration-rotation spectra of diatomic molecules --
10.10. Vibrational Raman transitions of diatomic molecules --
The vibrations of polyatomic molecules --
10.11. Normal modes --
a. Potential energy --
b. Normal coordinates --
c. Vibrational wavefunctions and energies --
10.12. Vibrational and Raman selection rules for polyatomic molecules --
a. Infrared activity --
b. Raman activity --
c. Group theory and molecular vibrations --
10.13. Further effects on vibrational and rotational spectra --
a. The effects of anharmonicity --
b. Coriolis forces --
c. Inversion doubling --
Further information --
10.1. Centrifugal distortion --
10.2. Normal modes: an example --
Mathematical background 5 Fourier series and Fourier transforms. MB5.1. Fourier series --
MB5.2. Fourier transforms --
MB5.3. The convolution theorem --
11. Molecular electronic transitions --
The states of diatomic molecules --
11.1. The Hund coupling cases --
11.2. Decoupling and & Lambda;-doubling --
11.3. Selection and correlation rules --
Vibronic transitions --
11.4. The Franck-Condon principle --
11.5. The rotational structure of vibronic transitions --
The electronic spectra of polyatomic molecules --
11.6. Symmetry considerations --
11.7. Chromophores --
11.8. Vibronically allowed transitions --
11.9. Singlet-triplet transitions --
The fates of excited states --
11.10. Non-radiative decay --
11.11. Radiative decay --
a. Fluorescence --
b. Phosphorescence --
Excited states and chemical reactions --
11.12. The conservation of orbital symmetry --
11.13. Electrocyclic reactions --
11.14. Cycloaddition reactions --
11.15. Photochemically induced electrocyclic reactions --
11.16. Photochemically induced cycloaddition reactions --
12. The electric properties of molecules --
The response to electric fields --
12.1. Molecular response parameters --
12.2. The static electric polarizability. A. The mean polarizability and polarizability volume --
b. The polarizability and molecular properties --
c. Polarizabilities and molecular spectroscopy --
d. Polarizabilities and dispersion interaction --
e. Retardation effects --
Bulk electrical properties --
12.3. The relative permittivity and the electric susceptibility --
a. Non-polar molecules --
b. Polar molecules --
12.4. Refractive index --
a. The dynamic polarizability --
b. The molar refractivity --
c. The refractive index and dispersion --
Optical activity --
12.5. Circular birefringence and optical rotation --
12.6. Magnetically induced polarization --
12.7. Rotational strength --
a. Symmetry properties --
b. Optical rotatory dispersion --
c. Estimation of rotational strengths --
Further information --
12.1. Oscillator strength --
12.2. Sum rules --
12.3. The Maxwell equations --
a. The general form of the equations --
b. The equations for fields in a vacuum --
c. The propagation of fields in a polarizable medium --
d. Propagation in chiral media --
13. The magnetic properties of molecules --
The description of magnetic fields. 13.1. Basic concepts --
13.2. Paramagnetism --
13.3. The vector potential --
a. The formulation of the vector potential --
b. Gauge invariance --
Magnetic perturbations --
13.4. The perturbation hamiltonian --
13.5. The magnetic susceptibility --
a. Expressions for the susceptibility --
b. Contributions to the susceptibility --
c. The role of the gauge --
13.6. The current density --
a. Real wavefunctions --
b. Orbitally degenerate states, zero field --
c. Orbitally non-degenerate states, non-zero field --
13.7. The diamagnetic current density --
13.8. The paramagnetic current density --
Magnetic resonance parameters --
13.9. Shielding constants --
a. The nuclear field --
b. The hamiltonian --
c. The first-order correction to the energy --
d. Contributions to the shielding constant --
13.10. The diamagnetic contribution to shielding --
13.11. The paramagnetic contribution to shielding --
13.12. The g-value --
a. The spin hamiltonian --
b. Formulating the g-value --
13.13. Spin-spin coupling --
13.14. Hyperfine interactions --
a. Dipolar coupling --
b. The Fermi contact interaction. C. The total interaction --
13.15. Nuclear spin-spin coupling --
a. The formulation of the problem --
b. Coupling through a chemical bond --
Further information --
13.1. The hamiltonian in the presence of a magnetic field --
13.2. The dipolar vector potential --
Mathematical background 6 Scalar and vector functions --
MB6.1. Definitions --
MB6.2. Differentiation --
14. Scattering theory --
The fundamental concepts --
14.1. The scattering matrix --
14.2. The scattering cross-section --
Elastic scattering --
14.3. Stationary scattering states --
a. The scattering amplitude --
b. The differential cross-section --
14.4. Scattering by a central potential --
a. The partial-wave stationary scattering state --
b. The partial-wave equation --
c. The scattering phase shift --
d. The scattering matrix element --
e. The scattering cross-section --
14.5. Scattering by a spherical square well --
a. The S-wave radial wavefunction and phase shift --
b. Background and resonance phase shifts --
c. The Breit-Wigner formula --
d. The resonance contribution to the scattering matrix element. 14.6. Methods of approximation --
a. The WKB approximation --
b. The Born approximation --
Multichannel scattering --
14.7. The scattering matrix for multichannel processes --
14.8. Inelastic scattering --
a. The form of the multichannel stationary scattering state --
b. Scattering amplitude and cross-sections --
c. The close-coupling approximation --
14.9. Reactive scattering --
14.10. The Smatrix and multichannel resonances --
Further information --
14.11. Green's functions --
Resource section --
Further reading. Note continued: 1. Character tables and direct products --
2. Vector coupling coefficients --
3. Wigner-Witmer rules.
There are no comments on this title.