TY - BOOK AU - Schilling,Robert J. AU - Harris,Sandra L. TI - Applied numerical methods for engineers using MATLAB and C / SN - 9788131504000 U1 - 620.00151 21 PY - 2007/// CY - New Delhi PB - Cengage KW - Engineering mathematics KW - Data processing KW - C (Computer program language) N1 - Includes bibliographical references (p. 530-532) and index; 1. Numerical computation motivation and objectives ; 1. Number representation ; 2. Machine precision ; 3. Round-off error ; 4. Truncation error ; 5. Random number generation ; 6. Numerical software ; 7. Applications ; 8. Chapter summary ; 9. Problems 2. Linear algebraic systems motivation and objectives ; 10. Gauss-jordan elimination ; 11. Gaussian elimination ; 12. Lu decomposition ; 13. Ill-conditioned systems ; 14. Iterative methods ; 15. Applications ; 16. Chapter summary ; 17. Problems 3. Eigenvalues and eigenvectors motivation and objectives ; 18. The characteristic polynomial ; 19. Power methods ; 20. Jacobi''s method ; 21. Householder transformation ; 22. Qr method ; 23. Danilevsky''s method ; 24. Polynomial roots ; 25. Applications ; 26. Chapter summary ; 27. problems 4. Curve fitting motivation and objectives ; 28. Interpolation ; 29. Newton''s difference formula ; 30. Cubic splines ; 31. Least square ; 32. Two-dimensional interpolation ; 33. Applications ; 34. Chapter summary ; 35. Problems 5. Root finding motivation and objectives ; 36. Bracketing methods ; 37. Contraction mapping method ; 38. Secant method ; 39. Muller''s method ; 40. Newton''s method ; 41. Polynomial roots ; 42. Nonlinear systems of equations ; 43. Applications ; 44. Chapter summary ; 45. Problems 6. Optimization motivation and objectives ; 46. Local and global minima ; 47. Line searches ; 48. Steepest descent method ; 49. Conjugate-gradient method ; 50. Quasi-newton methods ; 51. Penalty functions ; 52. Simulated annealing ; 53. Applications ; 54. Chapter summary ; 55. Problems 7. Differentiation and integration motivation and objectives ; 56. Numerical differentiation ; 57. Noise-corrupted data ; 58. Newton-cotes integration formulas ; 59. Romberg integration ; 60. Gauss quadrature ; 61. Improper integrals ; 62. Multiple integrals ; 63. Applications ; 64. Chapter summary ; 65. Problems 8. Ordinary differential equations motivation and objectives ; 66. Euler''s method ; 67. Runge-kutta methods ; 68. Step size control ; 69. Multi-step methods ; 70. Bulirsch-stoer extrapolation methods ; 71. Stiff differential equations ; 72. Boundary 73. Value problems ; 74. Applications ; 75. Summary ; 76. Problems 9. Partial differential equations motivation and objectives ; 77. Elliptic equations ; 78. One-dimensional parabolic equations ; 79. Two-dimensional parabolic equations ; 80. One-dimensional hyperbolic equations ; 81. Two-dimensional hyperbolic equations ; 82. Applications ; 83. Chapter summary ; 84. Problems 10. Digital signal processing motivation and objectives ; 85. Fourier transform ; 86. Fast fourier transform (fft) ; 87. Correlation ; 88. Convolution digital filters ; 89. Two-dimensional fft ; 90. System identification ; 91. Applications ; 92. Chapter summary ; 93. Problems ; 94. References and further reading ; 95. Appendix 1: nlib using matlab? ; 96. A numerical toolbox: nlib ; 97. Main-program support ; 98. Linear algebraic systems ; 99. Eigenvalues and eigenvectors ; 100. Curve fitting ; 101. Root finding ; 102. Optimization ; 103. Differentiation and integration ; 104. Ordinary differential equations ; 105. Partial differential equations ; 106. Digital signal processing ; 107. Appendix 2: nlib using c ; 108. A numerical library: nlib ; 109. Nlib data types ; 110. Nlib core: nlib.c ; 111. Tabular display: show.c ; 112. Graphical display: draw.c ; 113. Linear algebraic systems: linear.c ; 114. Eigenvalues and eigenvectors: eigen.c ; 115. Curve fitting: curves.c ; 116. Root finding: roots.c ; 117. Optimization: optim.c ; 118. Differentiation and integration: integ.c ; 119. Ordinary differential equations: ode.c ; 120. Partial differential equations: pde.c ; 121. Digital signal processing: dsp.c ; 122. Appendix 3: vectors and matrices ; 123. Vector and matrix notation ; 124. Basic operations ; 125. Inverses ; 126. Eigenvalues and eigenvectors ; 127. Vector norms ; 128. Appendix 4: answers to selected problems ; index ER -