TY - BOOK AU - Bertulani, C. A. AU - Danielewicz, P. TI - Introduction to nuclear reactions SN - 0750309326 (pbk) U1 - 539.75 PY - 2004/// CY - Bristol PB - Institue of Physics Publishing KW - Physics-Nuclear Physics N1 - Includes references and index; PREFACECLASSICAL AND QUANTUM SCATTERING Experiments with Nuclear ParticlesTheories and ExperimentsReactions ChannelsConservation LawsKinematics of Nuclear ReactionsCross Sections, Center of Mass and Laboratory Frames Classical Scattering The Classical Cross SectionExample: Rutherford scatteringOrbiting, rainbow and glory scatteringStationary scattering of a plane waveAppendix 1.A - Systems of unitsAppendix 1.B - Useful constants and conversion factorsExercises ReferencesTHE PARTIAL-WAVE EXPANSION METHOD The Scattering Wave Function Radial Equation Free Particle in Spherical Coordinates Phase Shifts Scattering Amplitude and Cross Sections Integral Formulae for the Phase-Shifts Hard Sphere Scattering Resonances Scattering from a Square-Well Low Energy Scattering: Scattering Length Scattering Length for Nucleon-Nucleon Scattering The Effective Range FormulaEffective Range for Nucleon-Nucleon Scattering Coulomb ScatteringAn Illustration: a - a Scattering Appendix 2.A - Absolute Phase Shifts and Levinson Theorem ExercisesReferencesFORMAL SCATTERING THEORY Introduction: Green's Functions Free Particle's Green's Functions Scattering Amplitude Born Approximation Transition and Scattering Matrices The Two-Potential Formula Distorted Wave Born Approximation Partial-Wave Expansion of the S-Matrix Partial-Wave Free Particle's Green's FunctionsCollision of Particles with SpinCollisions of Identical Particles Scattering of Clusters of Identical Fermions Imaginary Potentials: Absorption Cross SectionAppendix 3.A - Analytical Properties of the S-Matrix Exercises References COMPOUND NUCLEUS REACTIONS Introduction The Nucleon-Nucleon Interaction The Nucleus as a Strongly Absorbing Medium Mean Free Path of a Nucleon in Nuclei Fermi Gas Model Formal Theory of the Optical Potential Empirical Optical Potential Compound Nucleus Formation R-Matrix Average of the Cross Sections Level Densities in Nuclei Compound Nucleus Decay: The Weisskopf-Ewing Theory Reciprocity Theorem The Hauser-Feshbach Theory Appendix 4.A - The Shell Model ExercisesReferences FUSION AND FISSION Introduction The Liquid Drop Model General Considerations on Fusion Reactions The One Dimensional WKB Approximation Connection Formulas in WKBThe Three-Dimensional WKB Approximation Heavy Ion Fusion ReactionsSub-Barrier Fusion Superheavy Elements Occurrence of Fission Mass Distribution of the Fragments Neutrons Emitted in Fission Cross Sections for FissionEnergy Distribution in Fission Isomeric Fission The Nuclear Reactor Appendix 5.A - The Nilsson Model ExercisesReferences DIRECT REACTIONS IntroductionLevel Width and Fermi's Golden Rule Direct Reactions: A Simple Approach Direct Reactions: Detailed Calculations Applications of the Shell Model Direct Reactions as Probe of the Shell Model Nuclear Vibrations Photonuclear Reactions - Giant Resonances Coulomb Excitation Electromagnetic Transition Probabilities for Nuclear VibrationsNuclear Excitation in the Deformed Potential Model Appendix 6.A - Multipole Moments and the ElectromagneticInteractionExercisesReferences NUCLEAR REACTIONS IN THE COSMOS Cosmic RaysStellar Evolution: Hydrogen and CNO Cycles White Dwarfs and Neutron StarsSynthesis of Heavier ElementsSupernovae ExplosionsThermonuclear Cross Sections and Reaction Rates Reaction Networks Models for Astrophysical Nuclear Cross Sections Slow and Rapid Capture Processes Tests of the Solar Models Indirect Methods for Nuclear Astrophysics Reactions Exercises ReferencesHIGH ENGERGY COLLISIONS Introduction Nucleons as Billiard Balls Applications of the Classical Model The Eikonal Wavefunction Elastic Scattering Coulomb Amplitude and Coulomb Eikonal PhaseTotal Reaction Cross SectionsScattering of Particles with Spin The Optical Limit of Glauber Theory Pauli Blocking of Nucleon-Nucleon ScatteringGlauber Theory of Multiple Scattering Coulomb Excitation Inelastic Scattering Charge-Exchange Reactions Exercises ReferencesRELAVISTIC COLLISIONSUnpacking the Nucleus The Boltzmann-Uehling-Uhlenbeck Equation Wigner Function Numerical Treatment of Transport Equations Structure of HadronsQuantum Chromodynamics The Quark-Gluon Plasma Exercises References ER -