Welcome to UE Central Library

Keep Smiling

Introduction to numerical analysis using MATLAB / Rizwan Butt.

By: Material type: TextTextSeries: Mathematics seriesPublication details: Sudbury, Mass. : Jones and Bartlett Publishers, c2010.Description: xv, 814 p. ill. ; 25 cm. + 1CD-ROM (4 3/4 in.)ISBN:
  • 9781934015230 (hardcover with CDROM : alk. paper)
Subject(s): DDC classification:
  • 518 22 B9881
Contents:
1. Contents 2. 1 Number Systems and Errors 1 3. 1.1 4. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5. 1.2 6. Number Representation and Base of Numbers . . . . . . . . . . . . . 2 7. 1.2.1 8. Normalized Floating-point Representation . . . . . . . . . . . 4 9. 1.2.2Roundingand 10. Chopping. . . . . . . . . . . . . . . . . . . . . 6 11. 1.3 12. Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 13. 1.4Sources 14. Of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 15. 1.4.1Human 16. Error. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 17. 1.4.2 18. Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . 9 19. 1.4.3Round-o- 20. Error . . . . . . . . . . . . . . . . . . . . . . . . .10 21. 1.5 22. E-ect of Round-o- Errors in Arithmetic Operation . . . . . . . . . . 10 23. 1.5.1 24. Rounding o- Errors in Addition and Subtraction . . . . . . . 11 25. 1.5.2 26. Rounding o- Errors in Multiplication . . . . . . . . . . . . . 12 27. 1.5.3 28. Roundingo- Errors in Division . . . . . . . . . . . . . . . . . 14 29. 1.5.4 30. Rounding o- Errors in Powers and roots . . . . . . . . . . . . 16 31. 1.6Summary 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 33. 1.7Exercises 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 35. 2 Solution of Nonlinear Equations 21 36. 2.1 37. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 38. 2.2Methodof 39. Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 40. 2.3 41. False Position Method . . . . . . . . . . . . . . . . . . . . . . . . . . 29 42. 2.4Fixed-Point 43. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 44. 2.5Newton's 45. Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 46. 2.6Secant 47. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 48. 2.7Multiplicityofa 49. Root . . . . . . . . . . . . . . . . . . . . . . . . . . 55 50. 2.8 51. Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . 63 52. 2.9 53. Acceleration of Convergence . . . . . . . . . . . . . . . . . . . . . . . 76 54. 2.10 55. Systems of Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . 80 56. 2.10.1 57. Newton's Method. . . . . . . . . . . . . . . . . . . . . . . . . 81 58. Iii 59. Iv Contents 60. 2.11 61. Rootsofpolynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 62. 2.11.1 63. Horner'sMethod . . . . . . . . . . . . . . . . . . . . . . . . . 88 64. 2.11.2 65. Muller'sMethod . . . . . . . . . . . . . . . . . . . . . . . . . 94 66. 2.11.3 67. Bairstow'sMethod. . . . . . . . . . . . . . . . . . . . . . . . 98 68. 2.12 69. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 70. 2.13 71. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 72. 3 Systems of Linear Equations 113 73. 3.1 74. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 75. 3.1.1 76. Linearsysteminmatrixnotation . . . . . . . . . . . . . . .117 77. 3.2 78. Propertiesofmatricesanddeterminant . . . . . . . . . . . . . . . .119 79. 3.2.1 80. Introductionofmatrices. . . . . . . . . . . . . . . . . . . . .120 81. 3.2.2 82. Somespecialmatrixforms . . . . . . . . . . . . . . . . . . .124 83. 3.2.3 84. Thedeterminantofmatrix . . . . . . . . . . . . . . . . . . .133 85. 3.3 86. Numericalmethodsforlinearsystems. . . . . . . . . . . . . . . . .140 87. 3.4 88. Directmethodsforlinearsystems . . . . . . . . . . . . . . . . . . .140 89. 3.4.1 90. Cramer'sRule . . . . . . . . . . . . . . . . . . . . . . . . . .140 91. 3.4.2 92. Gaussianeliminationmethod. . . . . . . . . . . . . . . . . . 143 93. 3.4.3 94. Pivotingstrategies . . . . . . . . . . . . . . . . . . . . . . . .156 95. 3.4.4 96. Gauss-jordanmethod . . . . . . . . . . . . . . . . . . . . . .162 97. 3.4.5 98. Ludecompositionmethod . . . . . . . . . . . . . . . . . . . 166 99. 3.4.6 100. Tridiagonalsystemsoflinearequations . . . . . . . . . . . . 187 101. 3.5 102. Normsofvectorsandmatrices . . . . . . . . . . . . . . . . . . . . .191 103. 3.5.1 104. Vectornorms. . . . . . . . . . . . . . . . . . . . . . . . . . .191 105. 3.5.2 106. Matrixnorms. . . . . . . . . . . . . . . . . . . . . . . . . . .193 107. 3.6 108. Iterativemethodsforsolvinglinearsystems . . . . . . . . . . . . . 196 109. 3.6.1 110. Jacobiiterativemethod . . . . . . . . . . . . . . . . . . . . .197 111. 3.6.2 112. Gauss-seideliterativemethod . . . . . . . . . . . . . . . . . 202 113. 3.6.3 114. Convergencecriteria. . . . . . . . . . . . . . . . . . . . . . .207 115. 3.7 116. Eigenvaluesandeigenvectors . . . . . . . . . . . . . . . . . . . . . .212 117. 3.7.1 118. Successiveover-relaxationmethod . . . . . . . . . . . . . . 220 119. 3.7.2 120. Conjugategradientmethod. . . . . . . . . . . . . . . . . . . 226 121. 3.8 122. Conditioningoflinearsystems . . . . . . . . . . . . . . . . . . . . .231 123. 3.8.1 124. Errorsinsolvinglinearsystems . . . . . . . . . . . . . . . . 231 125. 3.8.2 126. Iterativere-nement . . . . . . . . . . . . . . . . . . . . . . .242 127. 3.9 128. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244 129. 3.10 130. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245 131. 4 Approximating Functions 259 132. 4.1 133. Introduction................................ 259 134. 4.2 135. Polynomialinterpolationforunevenintervals............. 262 136. 4.2.1 137. Lagrangeinterpolatingpolynomials .............. 263 138. 4.2.2 139. Newton'sGeneralInterpolatingFormula............ 274 140. 4.2.3 141. Aitken'sMethod ......................... 291 142. 4.3 143. Polynomialinterpolationforevenintervals .............. 294 144. 4.3.1 145. Forward-di-erences........................ 295 146. 4.3.2 147. Backward-di-erences....................... 300 148. 4.3.3 149. Central-di-erences ........................ 303 150. 4.4 151. Interpolationwithsplinefunctions................... 308 152. 4.4.1 153. Naturalcubicspline....................... 316 154. 4.4.2 155. Clampedspline.......................... 317 156. 4.5 157. Leastsquaresapproximation...................... 320 158. 4.5.1 159. Linearleastsquares....................... 321 160. 4.5.2 161. Polynomialleastsquares.................... 326 162. 4.5.3 163. Nonlinearleastsquares..................... 330 164. 4.5.4 165. Leastsquaresplane ....................... 338 166. 4.5.5 167. Overdeterminedlinearsystems ................ 340 168. 4.5.6 169. Leastsquareswithqrdecomposition............. 343 170. 4.5.7 171. Leastsquareswithsingularvaluedecomposition ...... 348 172. 4.6 173. Summary ................................. 353 174. 4.7 175. Exercises ................................. 354 176. 5 Di-erentiation and Integration 367 177. 5.1 178. Introduction................................ 367 179. 5.2 180. Numericaldi-erentiation ........................ 367 181. 5.3 182. Numericaldi-erentiationformulas................... 369 183. 5.3.1 184. Firstderivativesformulas.................... 369 185. 5.3.2 186. Secondderivativesformulas .................. 386 187. 5.4 188. Formulasforcomputingderivatives .................. 393 189. 5.4.1 190. Centraldi-erenceformulas................... 393 191. 5.4.2 192. Forwardandbackwarddi-erenceformulas.......... 394 193. 5.5 194. Numericalintegration .......................... 395 195. 5.6 196. Newton-cotesformulas ......................... 397 197. 5.6.1 198. Closednewton-cotesformulas................. 397 199. 5.6.2 200. Opennewton-cotesformulas.................. 424 201. 5.7 202. Repeateduseofthetrapezoidalrule ................. 428 203. 5.8 204. Rombergintegration........................... 430 205. 5.9 206. Gaussianquadratures .......................... 433 207. 5.10Summary 208. ................................. 438 209. 5.11Exercises 210. ................................. 439 211. 6 Ordinary Di-erential Equations 447 212. 6.1 213. Introduction................................ 447 214. 6.1.1 215. Classi-cationofdi-erentialequations............. 449 216. 6.2 217. Numericalmethodsforsolvingivp .................. 451 218. 6.3 219. Single-stepmethodsforivp ...................... 452 220. 6.3.1 221. Euler'sMethod.......................... 452 222. 6.3.2 223. Analysisoftheeuler'smethod................. 455 224. 6.3.3 225. Higher-ordertaylormethods.................. 457 226. 6.3.4 227. Runge-kuttamethods...................... 460 228. 6.3.5 229. Third-orderrunge-kuttamethod............... 468 230. 6.3.6 231. Fourth-orderrunge-kuttamethod .............. 469 232. 6.3.7 233. Fifth-orderrunge-kuttamethod ............... 472 234. 6.3.8 235. Runge-Kutta-mersonmethod.................. 473 236. 6.3.9 237. Runge-Kutta-Lawson'sFifth-ordermethod.......... 475 238. 6.3.10Runge-Kutta-butchersixth-ordermethod 239. .......... 475 240. 6.3.11Runge-Kutta-fehlbergmethod 241. ................. 476 242. 6.4 243. Multi-stepsmethodsforivp ...................... 478 244. 6.5 245. Predictor-correctormethods ...................... 485 246. 6.5.1 247. Milne-simpsonmethod ..................... 486 248. 6.5.2 249. Adams-Bashforth-moultonmethod............... 489 250. 6.6 251. Systemsofsimultaneousode ..................... 494 252. 6.7 253. Higher-orderdi-erentialequations .................. 498 254. 6.8 255. Boundary-valueproblems........................ 500 256. 6.8.1 257. Theshootingmethod ...................... 501 258. 6.8.2 259. Thenonlinearshootingmethod ................ 505 260. 6.8.3 261. Thefinitedi-erencemethod.................. 507 262. 6.9 263. Summary ................................. 511 264. 6.10Exercises 265. ................................. 512 266. 7 Eigenvalues and Eigenvectors 517 267. 7.1 268. Introduction................................ 517 269. 7.2 270. Linearalgebraandeigenvaluesproblems ............... 527 271. 7.3 272. Diagonalizationofmatrices ....................... 530 273. 7.4 274. Basicpropertiesofeigenvalueproblems................ 543 275. 7.5 276. Someimportantresultsofeigenvalueproblems ........... 560 277. 7.6 278. Numericalmethodsforeigenvalueproblems ............. 563 279. 7.7 280. Vectoriterativemethodsforeigenvalues................ 564 281. Contents v 282. Vi Contents 283. 7.7.1 284. Powermethod .......................... 564 285. Contents vii 286. 7.7.2 287. Inversepowermethod...................... 569 288. 7.7.3 289. Shiftedinversepowermethod.................. 572 290. 7.8 291. Locationofeigenvalues ......................... 576 292. 7.8.1 293. Gerschgorincirclestheorem .................. 576 294. 7.8.2 295. Rayleighquotient ........................ 578 296. 7.9 297. Intermediateeigenvalues......................... 580 298. 7.10eigenvaluesofsymmetricmatrices................... 583 299. 7.10.1jacobimethod 300. .......................... 584 301. 7.10.2sturmsequenceiteration 302. .................... 590 303. 7.10.3Given'sMethod.......................... 594 304. 7.10.4Householder'sMethod...................... 598 305. 7.11matrixdecompositionmethods..................... 602 306. 7.11.1qrmethod............................ 602 307. 7.11.2lrmethod............................ 606 308. 7.11.3upperhessenbergform..................... 609 309. 7.11.4singularvaluedecomposition.................. 616 310. 7.12Summary 311. ................................. 623 312. 7.13Exercises 313. ................................. 624 314. Appendices 634 315. A Some Mathematical Preliminaries 635 316. B Introduction of MATLAB 659 317. C Answers to Selected Exercises 697 318. Bibliography 726 319. Index 727
List(s) this item appears in: Mathematics
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliographical references (p. 801-808) and index.

1. Contents
2. 1 Number Systems and Errors 1
3. 1.1
4. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
5. 1.2
6. Number Representation and Base of Numbers . . . . . . . . . . . . . 2
7. 1.2.1
8. Normalized Floating-point Representation . . . . . . . . . . . 4
9. 1.2.2Roundingand
10. Chopping. . . . . . . . . . . . . . . . . . . . . 6
11. 1.3
12. Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
13. 1.4Sources
14. Of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
15. 1.4.1Human
16. Error. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
17. 1.4.2
18. Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . 9
19. 1.4.3Round-o-
20. Error . . . . . . . . . . . . . . . . . . . . . . . . .10
21. 1.5
22. E-ect of Round-o- Errors in Arithmetic Operation . . . . . . . . . . 10
23. 1.5.1
24. Rounding o- Errors in Addition and Subtraction . . . . . . . 11
25. 1.5.2
26. Rounding o- Errors in Multiplication . . . . . . . . . . . . . 12
27. 1.5.3
28. Roundingo- Errors in Division . . . . . . . . . . . . . . . . . 14
29. 1.5.4
30. Rounding o- Errors in Powers and roots . . . . . . . . . . . . 16
31. 1.6Summary
32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
33. 1.7Exercises
34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
35. 2 Solution of Nonlinear Equations 21
36. 2.1
37. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
38. 2.2Methodof
39. Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
40. 2.3
41. False Position Method . . . . . . . . . . . . . . . . . . . . . . . . . . 29
42. 2.4Fixed-Point
43. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
44. 2.5Newton's
45. Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
46. 2.6Secant
47. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
48. 2.7Multiplicityofa
49. Root . . . . . . . . . . . . . . . . . . . . . . . . . . 55
50. 2.8
51. Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . 63
52. 2.9
53. Acceleration of Convergence . . . . . . . . . . . . . . . . . . . . . . . 76
54. 2.10
55. Systems of Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . 80
56. 2.10.1
57. Newton's Method. . . . . . . . . . . . . . . . . . . . . . . . . 81
58. Iii
59. Iv Contents
60. 2.11
61. Rootsofpolynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
62. 2.11.1
63. Horner'sMethod . . . . . . . . . . . . . . . . . . . . . . . . . 88
64. 2.11.2
65. Muller'sMethod . . . . . . . . . . . . . . . . . . . . . . . . . 94
66. 2.11.3
67. Bairstow'sMethod. . . . . . . . . . . . . . . . . . . . . . . . 98
68. 2.12
69. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
70. 2.13
71. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
72. 3 Systems of Linear Equations 113
73. 3.1
74. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
75. 3.1.1
76. Linearsysteminmatrixnotation . . . . . . . . . . . . . . .117
77. 3.2
78. Propertiesofmatricesanddeterminant . . . . . . . . . . . . . . . .119
79. 3.2.1
80. Introductionofmatrices. . . . . . . . . . . . . . . . . . . . .120
81. 3.2.2
82. Somespecialmatrixforms . . . . . . . . . . . . . . . . . . .124
83. 3.2.3
84. Thedeterminantofmatrix . . . . . . . . . . . . . . . . . . .133
85. 3.3
86. Numericalmethodsforlinearsystems. . . . . . . . . . . . . . . . .140
87. 3.4
88. Directmethodsforlinearsystems . . . . . . . . . . . . . . . . . . .140
89. 3.4.1
90. Cramer'sRule . . . . . . . . . . . . . . . . . . . . . . . . . .140
91. 3.4.2
92. Gaussianeliminationmethod. . . . . . . . . . . . . . . . . . 143
93. 3.4.3
94. Pivotingstrategies . . . . . . . . . . . . . . . . . . . . . . . .156
95. 3.4.4
96. Gauss-jordanmethod . . . . . . . . . . . . . . . . . . . . . .162
97. 3.4.5
98. Ludecompositionmethod . . . . . . . . . . . . . . . . . . . 166
99. 3.4.6
100. Tridiagonalsystemsoflinearequations . . . . . . . . . . . . 187
101. 3.5
102. Normsofvectorsandmatrices . . . . . . . . . . . . . . . . . . . . .191
103. 3.5.1
104. Vectornorms. . . . . . . . . . . . . . . . . . . . . . . . . . .191
105. 3.5.2
106. Matrixnorms. . . . . . . . . . . . . . . . . . . . . . . . . . .193
107. 3.6
108. Iterativemethodsforsolvinglinearsystems . . . . . . . . . . . . . 196
109. 3.6.1
110. Jacobiiterativemethod . . . . . . . . . . . . . . . . . . . . .197
111. 3.6.2
112. Gauss-seideliterativemethod . . . . . . . . . . . . . . . . . 202
113. 3.6.3
114. Convergencecriteria. . . . . . . . . . . . . . . . . . . . . . .207
115. 3.7
116. Eigenvaluesandeigenvectors . . . . . . . . . . . . . . . . . . . . . .212
117. 3.7.1
118. Successiveover-relaxationmethod . . . . . . . . . . . . . . 220
119. 3.7.2
120. Conjugategradientmethod. . . . . . . . . . . . . . . . . . . 226
121. 3.8
122. Conditioningoflinearsystems . . . . . . . . . . . . . . . . . . . . .231
123. 3.8.1
124. Errorsinsolvinglinearsystems . . . . . . . . . . . . . . . . 231
125. 3.8.2
126. Iterativere-nement . . . . . . . . . . . . . . . . . . . . . . .242
127. 3.9
128. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
129. 3.10
130. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
131. 4 Approximating Functions 259
132. 4.1
133. Introduction................................ 259
134. 4.2
135. Polynomialinterpolationforunevenintervals............. 262
136. 4.2.1
137. Lagrangeinterpolatingpolynomials .............. 263
138. 4.2.2
139. Newton'sGeneralInterpolatingFormula............ 274
140. 4.2.3
141. Aitken'sMethod ......................... 291
142. 4.3
143. Polynomialinterpolationforevenintervals .............. 294
144. 4.3.1
145. Forward-di-erences........................ 295
146. 4.3.2
147. Backward-di-erences....................... 300
148. 4.3.3
149. Central-di-erences ........................ 303
150. 4.4
151. Interpolationwithsplinefunctions................... 308
152. 4.4.1
153. Naturalcubicspline....................... 316
154. 4.4.2
155. Clampedspline.......................... 317
156. 4.5
157. Leastsquaresapproximation...................... 320
158. 4.5.1
159. Linearleastsquares....................... 321
160. 4.5.2
161. Polynomialleastsquares.................... 326
162. 4.5.3
163. Nonlinearleastsquares..................... 330
164. 4.5.4
165. Leastsquaresplane ....................... 338
166. 4.5.5
167. Overdeterminedlinearsystems ................ 340
168. 4.5.6
169. Leastsquareswithqrdecomposition............. 343
170. 4.5.7
171. Leastsquareswithsingularvaluedecomposition ...... 348
172. 4.6
173. Summary ................................. 353
174. 4.7
175. Exercises ................................. 354
176. 5 Di-erentiation and Integration 367
177. 5.1
178. Introduction................................ 367
179. 5.2
180. Numericaldi-erentiation ........................ 367
181. 5.3
182. Numericaldi-erentiationformulas................... 369
183. 5.3.1
184. Firstderivativesformulas.................... 369
185. 5.3.2
186. Secondderivativesformulas .................. 386
187. 5.4
188. Formulasforcomputingderivatives .................. 393
189. 5.4.1
190. Centraldi-erenceformulas................... 393
191. 5.4.2
192. Forwardandbackwarddi-erenceformulas.......... 394
193. 5.5
194. Numericalintegration .......................... 395
195. 5.6
196. Newton-cotesformulas ......................... 397
197. 5.6.1
198. Closednewton-cotesformulas................. 397
199. 5.6.2
200. Opennewton-cotesformulas.................. 424
201. 5.7
202. Repeateduseofthetrapezoidalrule ................. 428
203. 5.8
204. Rombergintegration........................... 430
205. 5.9
206. Gaussianquadratures .......................... 433
207. 5.10Summary
208. ................................. 438
209. 5.11Exercises
210. ................................. 439
211. 6 Ordinary Di-erential Equations 447
212. 6.1
213. Introduction................................ 447
214. 6.1.1
215. Classi-cationofdi-erentialequations............. 449
216. 6.2
217. Numericalmethodsforsolvingivp .................. 451
218. 6.3
219. Single-stepmethodsforivp ...................... 452
220. 6.3.1
221. Euler'sMethod.......................... 452
222. 6.3.2
223. Analysisoftheeuler'smethod................. 455
224. 6.3.3
225. Higher-ordertaylormethods.................. 457
226. 6.3.4
227. Runge-kuttamethods...................... 460
228. 6.3.5
229. Third-orderrunge-kuttamethod............... 468
230. 6.3.6
231. Fourth-orderrunge-kuttamethod .............. 469
232. 6.3.7
233. Fifth-orderrunge-kuttamethod ............... 472
234. 6.3.8
235. Runge-Kutta-mersonmethod.................. 473
236. 6.3.9
237. Runge-Kutta-Lawson'sFifth-ordermethod.......... 475
238. 6.3.10Runge-Kutta-butchersixth-ordermethod
239. .......... 475
240. 6.3.11Runge-Kutta-fehlbergmethod
241. ................. 476
242. 6.4
243. Multi-stepsmethodsforivp ...................... 478
244. 6.5
245. Predictor-correctormethods ...................... 485
246. 6.5.1
247. Milne-simpsonmethod ..................... 486
248. 6.5.2
249. Adams-Bashforth-moultonmethod............... 489
250. 6.6
251. Systemsofsimultaneousode ..................... 494
252. 6.7
253. Higher-orderdi-erentialequations .................. 498
254. 6.8
255. Boundary-valueproblems........................ 500
256. 6.8.1
257. Theshootingmethod ...................... 501
258. 6.8.2
259. Thenonlinearshootingmethod ................ 505
260. 6.8.3
261. Thefinitedi-erencemethod.................. 507
262. 6.9
263. Summary ................................. 511
264. 6.10Exercises
265. ................................. 512
266. 7 Eigenvalues and Eigenvectors 517
267. 7.1
268. Introduction................................ 517
269. 7.2
270. Linearalgebraandeigenvaluesproblems ............... 527
271. 7.3
272. Diagonalizationofmatrices ....................... 530
273. 7.4
274. Basicpropertiesofeigenvalueproblems................ 543
275. 7.5
276. Someimportantresultsofeigenvalueproblems ........... 560
277. 7.6
278. Numericalmethodsforeigenvalueproblems ............. 563
279. 7.7
280. Vectoriterativemethodsforeigenvalues................ 564
281. Contents v
282. Vi Contents
283. 7.7.1
284. Powermethod .......................... 564
285. Contents vii
286. 7.7.2
287. Inversepowermethod...................... 569
288. 7.7.3
289. Shiftedinversepowermethod.................. 572
290. 7.8
291. Locationofeigenvalues ......................... 576
292. 7.8.1
293. Gerschgorincirclestheorem .................. 576
294. 7.8.2
295. Rayleighquotient ........................ 578
296. 7.9
297. Intermediateeigenvalues......................... 580
298. 7.10eigenvaluesofsymmetricmatrices................... 583
299. 7.10.1jacobimethod
300. .......................... 584
301. 7.10.2sturmsequenceiteration
302. .................... 590
303. 7.10.3Given'sMethod.......................... 594
304. 7.10.4Householder'sMethod...................... 598
305. 7.11matrixdecompositionmethods..................... 602
306. 7.11.1qrmethod............................ 602
307. 7.11.2lrmethod............................ 606
308. 7.11.3upperhessenbergform..................... 609
309. 7.11.4singularvaluedecomposition.................. 616
310. 7.12Summary
311. ................................. 623
312. 7.13Exercises
313. ................................. 624
314. Appendices 634
315. A Some Mathematical Preliminaries 635
316. B Introduction of MATLAB 659
317. C Answers to Selected Exercises 697
318. Bibliography 726
319. Index 727

There are no comments on this title.

to post a comment.
Copyright © 2023, University of Education, Lahore. All Rights Reserved.
Email:centrallibrary@ue.edu.pk