Welcome to UE Central Library

Keep Smiling

Applied numerical methods for engineers using MATLAB and C / Robert J. Schilling, Sandra L. Harris.

By: Contributor(s): Material type: TextTextPublication details: New Delhi : Cengage, 2007Description: xx, 715 p. ill. ; 25 cm. +ISBN:
  • 9788131504000
Subject(s): DDC classification:
  • 620.00151 21 S3346
Contents:
1. Numerical computation motivation and objectives ; 1. Number representation ; 2. Machine precision ; 3. Round-off error ; 4. Truncation error ; 5. Random number generation ; 6. Numerical software ; 7. Applications ; 8. Chapter summary ; 9. Problems 2. Linear algebraic systems motivation and objectives ; 10. Gauss-jordan elimination ; 11. Gaussian elimination ; 12. Lu decomposition ; 13. Ill-conditioned systems ; 14. Iterative methods ; 15. Applications ; 16. Chapter summary ; 17. Problems 3. Eigenvalues and eigenvectors motivation and objectives ; 18. The characteristic polynomial ; 19. Power methods ; 20. Jacobi''s method ; 21. Householder transformation ; 22. Qr method ; 23. Danilevsky''s method ; 24. Polynomial roots ; 25. Applications ; 26. Chapter summary ; 27. problems 4. Curve fitting motivation and objectives ; 28. Interpolation ; 29. Newton''s difference formula ; 30. Cubic splines ; 31. Least square ; 32. Two-dimensional interpolation ; 33. Applications ; 34. Chapter summary ; 35. Problems 5. Root finding motivation and objectives ; 36. Bracketing methods ; 37. Contraction mapping method ; 38. Secant method ; 39. Muller''s method ; 40. Newton''s method ; 41. Polynomial roots ; 42. Nonlinear systems of equations ; 43. Applications ; 44. Chapter summary ; 45. Problems 6. Optimization motivation and objectives ; 46. Local and global minima ; 47. Line searches ; 48. Steepest descent method ; 49. Conjugate-gradient method ; 50. Quasi-newton methods ; 51. Penalty functions ; 52. Simulated annealing ; 53. Applications ; 54. Chapter summary ; 55. Problems 7. Differentiation and integration motivation and objectives ; 56. Numerical differentiation ; 57. Noise-corrupted data ; 58. Newton-cotes integration formulas ; 59. Romberg integration ; 60. Gauss quadrature ; 61. Improper integrals ; 62. Multiple integrals ; 63. Applications ; 64. Chapter summary ; 65. Problems 8. Ordinary differential equations motivation and objectives ; 66. Euler''s method ; 67. Runge-kutta methods ; 68. Step size control ; 69. Multi-step methods ; 70. Bulirsch-stoer extrapolation methods ; 71. Stiff differential equations ; 72. Boundary 73. Value problems ; 74. Applications ; 75. Summary ; 76. Problems 9. Partial differential equations motivation and objectives ; 77. Elliptic equations ; 78. One-dimensional parabolic equations ; 79. Two-dimensional parabolic equations ; 80. One-dimensional hyperbolic equations ; 81. Two-dimensional hyperbolic equations ; 82. Applications ; 83. Chapter summary ; 84. Problems 10. Digital signal processing motivation and objectives ; 85. Fourier transform ; 86. Fast fourier transform (fft) ; 87. Correlation ; 88. Convolution digital filters ; 89. Two-dimensional fft ; 90. System identification ; 91. Applications ; 92. Chapter summary ; 93. Problems ; 94. References and further reading ; 95. Appendix 1: nlib using matlab? ; 96. A numerical toolbox: nlib ; 97. Main-program support ; 98. Linear algebraic systems ; 99. Eigenvalues and eigenvectors ; 100. Curve fitting ; 101. Root finding ; 102. Optimization ; 103. Differentiation and integration ; 104. Ordinary differential equations ; 105. Partial differential equations ; 106. Digital signal processing ; 107. Appendix 2: nlib using c ; 108. A numerical library: nlib ; 109. Nlib data types ; 110. Nlib core: nlib.c ; 111. Tabular display: show.c ; 112. Graphical display: draw.c ; 113. Linear algebraic systems: linear.c ; 114. Eigenvalues and eigenvectors: eigen.c ; 115. Curve fitting: curves.c ; 116. Root finding: roots.c ; 117. Optimization: optim.c ; 118. Differentiation and integration: integ.c ; 119. Ordinary differential equations: ode.c ; 120. Partial differential equations: pde.c ; 121. Digital signal processing: dsp.c ; 122. Appendix 3: vectors and matrices ; 123. Vector and matrix notation ; 124. Basic operations ; 125. Inverses ; 126. Eigenvalues and eigenvectors ; 127. Vector norms ; 128. Appendix 4: answers to selected problems ; index
List(s) this item appears in: Computer_2022
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books Books UE-Central Library 620.00151 S3346 (Browse shelf(Opens below)) Available T1720

Includes bibliographical references (p. 530-532) and index.

1. Numerical computation motivation and objectives ;
1. Number representation ;
2. Machine precision ;
3. Round-off error ;
4. Truncation error ;
5. Random number generation ;
6. Numerical software ;
7. Applications ;
8. Chapter summary ;
9. Problems 2. Linear algebraic systems motivation and objectives ;
10. Gauss-jordan elimination ;
11. Gaussian elimination ;
12. Lu decomposition ;
13. Ill-conditioned systems ;
14. Iterative methods ;
15. Applications ;
16. Chapter summary ;
17. Problems 3. Eigenvalues and eigenvectors motivation and objectives ;
18. The characteristic polynomial ;
19. Power methods ;
20. Jacobi''s method ;
21. Householder transformation ;
22. Qr method ;
23. Danilevsky''s method ;
24. Polynomial roots ;
25. Applications ;
26. Chapter summary ;
27. problems 4. Curve fitting motivation and objectives ;
28. Interpolation ;
29. Newton''s difference formula ;
30. Cubic splines ;
31. Least square ;
32. Two-dimensional interpolation ;
33. Applications ;
34. Chapter summary ;
35. Problems 5. Root finding motivation and objectives ;
36. Bracketing methods ;
37. Contraction mapping method ;
38. Secant method ;
39. Muller''s method ;
40. Newton''s method ;
41. Polynomial roots ;
42. Nonlinear systems of equations ;
43. Applications ;
44. Chapter summary ;
45. Problems 6. Optimization motivation and objectives ;
46. Local and global minima ;
47. Line searches ;
48. Steepest descent method ;
49. Conjugate-gradient method ;
50. Quasi-newton methods ;
51. Penalty functions ;
52. Simulated annealing ;
53. Applications ;
54. Chapter summary ;
55. Problems 7. Differentiation and integration motivation and objectives ;
56. Numerical differentiation ;
57. Noise-corrupted data ;
58. Newton-cotes integration formulas ;
59. Romberg integration ;
60. Gauss quadrature ;
61. Improper integrals ;
62. Multiple integrals ;
63. Applications ;
64. Chapter summary ;
65. Problems 8. Ordinary differential equations motivation and objectives ;
66. Euler''s method ;
67. Runge-kutta methods ;
68. Step size control ;
69. Multi-step methods ;
70. Bulirsch-stoer extrapolation methods ;
71. Stiff differential equations ;
72. Boundary
73. Value problems ;
74. Applications ;
75. Summary ;
76. Problems 9. Partial differential equations motivation and objectives ;
77. Elliptic equations ;
78. One-dimensional parabolic equations ;
79. Two-dimensional parabolic equations ;
80. One-dimensional hyperbolic equations ;
81. Two-dimensional hyperbolic equations ;
82. Applications ;
83. Chapter summary ;
84. Problems 10. Digital signal processing motivation and objectives ;
85. Fourier transform ;
86. Fast fourier transform (fft) ;
87. Correlation ;
88. Convolution digital filters ;
89. Two-dimensional fft ;
90. System identification ;
91. Applications ;
92. Chapter summary ;
93. Problems ;
94. References and further reading ;
95. Appendix 1: nlib using matlab? ;
96. A numerical toolbox: nlib ;
97. Main-program support ;
98. Linear algebraic systems ;
99. Eigenvalues and eigenvectors ;
100. Curve fitting ;
101. Root finding ;
102. Optimization ;
103. Differentiation and integration ;
104. Ordinary differential equations ;
105. Partial differential equations ;
106. Digital signal processing ;
107. Appendix 2: nlib using c ;
108. A numerical library: nlib ;
109. Nlib data types ;
110. Nlib core: nlib.c ;
111. Tabular display: show.c ;
112. Graphical display: draw.c ;
113. Linear algebraic systems: linear.c ;
114. Eigenvalues and eigenvectors: eigen.c ;
115. Curve fitting: curves.c ;
116. Root finding: roots.c ;
117. Optimization: optim.c ;
118. Differentiation and integration: integ.c ;
119. Ordinary differential equations: ode.c ;
120. Partial differential equations: pde.c ;
121. Digital signal processing: dsp.c ;
122. Appendix 3: vectors and matrices ;
123. Vector and matrix notation ;
124. Basic operations ;
125. Inverses ;
126. Eigenvalues and eigenvectors ;
127. Vector norms ;
128. Appendix 4: answers to selected problems ; index

There are no comments on this title.

to post a comment.
Copyright © 2023, University of Education, Lahore. All Rights Reserved.
Email:centrallibrary@ue.edu.pk